Answer:- 14.0 moles of hydrogen present in 2.00 moles of
.
Solution:- We have been given with 2.00 moles of
and asked to calculate the grams of hydrogen present in it. It's a two step conversion problem. In first step we convert the moles of the compound to moles of hydrogen as one mol of the compound contains 7 moles of hydrogen. In next step the moles are converted to grams on multiplying the moles by atomic mass of H. The calculations are shown as:

= 14.0 g H
So, there are 14.0 g of hydrogen in 2.00 moles of
.
Answer:
2.11 x 10²⁴ molecules.
Explanation:
- <em>It is known that every 1.0 mole of a molecule contains Avogadro's number of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication:</u></em>
1.0 mole of H₂O contains → 6.022 x 10²³ molecules.
3.5 mole of H₂O contains → ??? molecules.
∴ 3.5 mole of H₂O contain = (3.5 mol)(6.022 x 10²³) = 2.11 x 10²⁴ molecules.
Strontium (Sr). Elements in the same group of the periodic table have similar characteristics.
Answer:
Water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Explanation:
Hello.
In this case, since no options are given we can infer from the statement that due to water's higher boiling point than acetone we can conclude that when they are in liquid state, water has stronger intermolecular forces which allow its particles to be held in a stronger way in comparison to the acetone's molecules, for that reason, more energy will be required in order to separate them and promote the boiling process, which is attained via increasing the temperature. Besides, less energy will be required for the separation of the acetone's molecules in order to boil it when liquid, therefore, a lower temperature is required.
In such a way, we can sum up that water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Regards.
Watch melissa maribel explains it amazingly on her yt channel