Molar Mass of Calcium carbonate:-








Now



Their locations can vary depending on the molecule they are associated with but they are usually in a "cloud " that is on the outside of an atom/molecule and if the atom is unstable the electrons tend to be located farther away from the atom.
Answer:
The answer is B. Van der Waals forces are weaker than ionic and covalent bonds.
Explanation:
In general, if we arrange these molecular forces from the strongest to weakest, it would be like this:
Covalent bonds > Ionic bonds > Hydrogen bonds > Dipole-Dipole Interactions > Van der Waals forces
Covalent bonds are known to have the strongest and most stable bonds since they go deep and into the inter-molecular state. A diamond is an example of a compound with this characteristic bond.
Ionic bonds are the next strongest molecular bond following covalent bonds. This is due to the protons and electrons causing an electro-static force which results to the strong bonds. An example would be Sodium Chloride (NaCl), which when separated is Na⁺ and Cl⁻.
Van der Waals forces, also known as Dispersion forces, are the weakest type of molecular bonds. They are only formed through residual molecular attractions when molecules pass by each other. It doesn't even last long due to the uneven electron dispersion. It can be made stronger by adding more electrons in the molecule. This kind of molecular bonds appear in non-polar molecules such as carbon dioxide.
HOPE THIS HELPS!!!!!!!!!!!!!!
///////////////////////////////////////////////////////////////////////////////////////////
C6H5 is the molecular formula for Phenyl.
The given chemical reaction given above is already balanced such that the number of atoms in the left hand side of the equation is equal to that of the right hand side. Using the dimensional analysis, proper conversion factors and the molar masses,
mass of nitrogen = (0.129 g H₂)(1 mol H₂/2 g H₂)(1 mol N₂/3 mol H₂)(28 g N₂/1 mol N₂)
mass of nitrogen = 0.602 g N₂
Therefore, 0.602 g of nitrogen will be required for he reaction.