An inorganic compound is a substance that does not contain both carbon andhydrogen. A great many inorganic compounds do contain hydrogenatoms, such as water (H2O) and the hydrochloric acid (HCl) produced by your stomach. In contrast, only a handful of inorganic compounds contain carbon atoms.
This is equivalent to having a standard enthalpy change of reaction equal to 10.611 kJ
<u>Explanation</u>:
The standard enthalpy change of reaction, Δ
H
∘
, is given to you in kilojoules per mole, which means that it corresponds to the formation of one mole of carbon dioxide.
C
(s] + O
2(g]
→
CO
2(g]
Remember, a negative enthalpy change of reaction tells you that heat is being given off, i.e. the reaction is exothermic.
First to convert grams of carbon into moles,
use carbon's molar mass(12.011 g).
Moles of C = mass in gram / molar mass
= 0.327 g / 12.011 g
Moles of C = 0.027 moles
Now, in order to determine how much heat is released by burning of 0.027 moles of carbon to form carbon-dioxide.
= 0.027 moles C
393 kJ
Heat released = 10.611 kJ.
So, when 0.027 moles of carbon react with enough oxygen gas, the reaction will give off 10.611 kJ of heat.
This is equivalent to having a standard enthalpy change of reaction equal to 10.611 kJ
Answer:
Molarity indicates the number of moles of solute per liter of solution and is one of the most common units used to measure the concentration of a solution.
Explanation:
Answer:
The electrolyte carries positively charged lithium ions from the anode to the cathode and vice versa through the separator. The movement of the lithium ions creates free electrons in the anode which creates a charge at the positive current collectors
We have been given the condition that carbon makes up 35%
of the mass of the substance and the rest is made up of oxygen. With this, it
can be concluded that 65% of the substance is made up of oxygen. If we let x be
the mass of oxygen in the substance, the operation that would best represent
the scenario is,
<span> x = (0.65)(5.5 g)</span>
<span> <em> </em><span><em>x =
3.575 g</em></span></span>