Answer:
81 cm²
Step-by-step explanation:
Since, the lateral face of a triangular pyramid is a triangle,
Given,
The base edge or the base of one lateral face of pyramid, a = 6 cm,
And, the slant height or the height of the face, k = 9 cm,
Thus, the area of one lateral face of the pyramid,




We know that, a Regular triangular pyramid has 3 lateral faces,
Hence, the total lateral area of the pyramid,


