The theory is most likely accurate and the main reason behind this process of thinking is because a majority of the scientists around the world agree with the theory. It can never be biased or incomplete. The correct option among all the options that are given in the question is the third option or option "C".
Answer:

Explanation:
For a first order reaction the rate law is:
![v=\frac{-d[A]}{[A]}=k[A]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B-d%5BA%5D%7D%7B%5BA%5D%7D%3Dk%5BA%5D)
Integranting both sides of the equation we get:
![\int\limits^a_b {\frac{d[A]}{[A]}} \, dx =-k\int\limits^t_0 {} \, dt](https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%5Cfrac%7Bd%5BA%5D%7D%7B%5BA%5D%7D%7D%20%5C%2C%20dx%20%3D-k%5Cint%5Climits%5Et_0%20%7B%7D%20%5C%2C%20dt)
where "a" stands for [A] (molar concentration of a given reagent) and "b" is {A]0 (initial molar concentration of a given reagent), "t" is the time in seconds.
From that integral we get the integrated rate law:
![ln\frac{[A]}{[A]_{0} } =-kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA%5D%7D%7B%5BA%5D_%7B0%7D%20%7D%20%3D-kt)
![[A]=[A]_{0}e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_%7B0%7De%5E%7B-kt%7D)
![ln[A]=ln[A]_{0} -kt](https://tex.z-dn.net/?f=ln%5BA%5D%3Dln%5BA%5D_%7B0%7D%20-kt)
![k=\frac{ln[A]_{0}-ln[A]}{t}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7Bln%5BA%5D_%7B0%7D-ln%5BA%5D%7D%7Bt%7D)
therefore k is

Answer:
Option D, ketone
Explanation:
Since Jones reagent (CrO3/H2SO4) is a strong oxidizing agent and oxidize the secondary alcohol to ketone.
Example , isopropanol gets oxidized to propanone.
Primary Alcohol gets oxidized to Carboxylic acids.
Electrons are only
about 0.054% as massive as neutrons and protons are only 99.86% as massive as
the neutrons. The mass of the Proton is 1.67 x 10^-27 kg and the mass of the electron
is 9.11 x 10^-31 kg. The mass of the electron is so much lighter than the mass
of the proton.