Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.
Answer:
4552 mL
Explanation:
From the question given above, the following data were obtained:
Volume of stock solution (V₁) = 55 mL
Molarity of stock solution (M₁) = 12 M
Molarity of diluted solution (M₂) = 0.145 M
Volume of diluted solution (V₂) =?
The volume of the diluted solution can be obtained by using the dilution formula as illustrated below:
M₁V₁ = M₂V₂
12 × 55 = 0.145 × V₂
660 = 0.145 × V₂
Divide both side by 0.145
V₂ = 660 / 0.145
V₂ ≈ 4552 mL
Thus, the volume of the diluted solution is 4552 mL
Explanation:
b is correct. 30.6 g H2O is produced.
Answer:
5.00 grams of salt contain more particles than 5.0 grams of sugar
Explanation:
Salt = NaCl
Molar mass = 58.45 g/mol
Sugar = C₁₂H₂₂O₁₁
Molar mass = 342.3 g/mol
Sugar's molar mass is higher than salt.
So 1 mol of sugar weighs more than 1 mol of salt
But 5 grams of salt occupies more mole than 5 grams of sugar
5 grams of salt = 5g / 58.45 g/m = 0.085 moles
5 grams of sugar = 5g/ 342.3 g/m = 0.014 moles
In conclusion, we have more moles of salt in 5 grams; therefore there are more particles than in 5 g of sugar.