<h2>
Answer:</h2><h2>
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
</h2>
Explanation:
A meteoroid is in a circular orbit 600 km above the surface of a distant planet.
Mass of the planet = mass of earth = 5.972 x
Kg
Radius of the earth = 90% of earth radius = 90% 6370 = 5733 km
The acceleration of the meteoroid due to the gravitational force exerted by the planet = ?
By formula, g = 
where g is the acceleration due to the gravity
G is the universal gravitational constant = 6.67 x

M is the mass of the planet
r is the radius of the planet
Substituting the values, we get
g = 
g = 12.12 m/
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
Answer:
The lenses with different focal length are four.
Explanation:
Given that,
Radius of curvature R₁= 4
Radius of curvature R₂ = 8
We know ,
Refractive index of glass = 1.6
When, R₁= 4, R₂ = 8
We need to calculate the focal length of the lens
Using formula of focal length

Put the value into the formula



When , R₁= -4, R₂ = 8
Put the value into the formula



When , R₁= 4, R₂ = -8
Put the value into the formula



When , R₁= -4, R₂ = -8
Put the value into the formula



Hence, The lenses with different focal length are four.
High temperature gives the hydrogen atoms enough energy to overcome the electrical repulsion between the protons. Fusion requires temperatures of about 100 million Kelvin (approximately six times hotter than the sun's core).

The electromagnetic that has a shorter wavelength is ultraviolet (UV)
The centripetal acceleration a is 4.32
10^-4 m/s^2.
<u>Explanation:</u>
The speed is constant and computing the speed from the distance and time for one full lap.
Given, distance = 400 mm = 0.4 m, Time = 100 s.
Computing the v = 0.4 m / 100 s
v = 4
10^-3 m/s.
radius of the circular end r = 37 mm = 0.037 m.
centripetal acceleration a = v^2 / r
= (4
10^-3)^2 / 0.037
a = 4.32
10^-4 m/s^2.