Answer:
Part a)

Part b)

Explanation:
As we know that electric force on electric charge is given as

here we have

E = 153 N/C
now force is given as

Gravitational force on electric charge near surface of earth is given as


now the ratio of two forces is given as


Part b)
Now the ball is balanced by the electric force and the force of gravity on it
so here we have



here we have

The Box's Acceleration : g sin θ
<h3>Further explanation </h3>
Newton's 2nd law explains that the acceleration produced by the resultant force on an object is proportional and in line with the resultant force and inversely proportional to the mass of the object
∑F = m. a
F = force, N
m = mass = kg
a = acceleration due to gravity, m / s²
We plot the forces acting on the block (picture attached) according to the y-axis and the x-axis.
Because the motion of the block is in the same direction as the x-axis, ignoring the friction force with the inclined plane, then

Answer:

Explanation:
m = Mass attached to spring = 14 kg
g = Acceleration due to gravity = 
x = Displacement of spring = 
k = Spring constant
The force balance of the system is given by

The spring constant for that spring is
.
Answer: The first answer for the first problem, and the 2nd answer for the second problem
Explanation: For the first one, if it is absolute zero, the molecules would not move at all.
For the second one, the temperature of the sample will increase due to the movement.
Answer:
Alloy, metallic substance composed of two or more elements, as either a compound or a solution. The components of alloys are ordinarily themselves metals, though carbon, a nonmetal, is an essential constituent of steel.
Explanation:
Alloys are usually produced by melting the mixture of ingredients. The value of alloys was discovered in very ancient times; brass (copper and zinc) and bronze (copper and tin) were especially important. Today, the most important are the alloy steels, broadly defined as steels containing significant amounts of elements other than iron and carbon. The principal alloying elements for steel are chromium, nickel, manganese, molybdenum, silicon, tungsten, vanadium, and boron have a wide range of special properties, such as hardness, toughness, corrosion resistance, magnetizability, and ductility. Nonferrous alloys, mainly copper–nickel, bronze, and aluminum alloys, are much used in coinage. The distinction between an alloying metal and an impurity is sometimes subtle; in aluminum, for example, silicon may be considered an impurity or a valuable component, depending on the application, because silicon adds strength though it reduces corrosion resistance.