24-15=9 m/s slower in 12 seconds. So 9/12 m/s² slower. Therefore the acceleration is -0,75 m/s²
The angle of inclination is calculated using sin
function,
sin θ = 5 m / 20 m = 0.25
θ = 14.4775°
<span>The net force exerted is then calculated:
F net = m g sin θ = 20 * 9.8 * 0.25 </span>
F net = 49N
<span>Work is product of net force and distance:
W = F net * d = 49 * 20 </span>
<span>Work = 980 J </span>
Answer:
R_cm = 4.66 10⁶ m
Explanation:
The important concept of mass center defined by
R_cm = 1 / M ∑ x_i m_i
where M is the total mass, x_i and m_i are the position and masses of each body
Let's apply this expression to our case.
Let's set a reference frame where the axis points from the center of the Earth to the Moon,
R_cm = 1 / M (m_earth 0 + m_moon d)
the total mass is
M = m_earth + m_moon
the distance from the Earth is zero because all mass can be considered to be at its gravimetric center
let's calculate
M = 5.98 10²⁴ + 7.35 10²²
M = 6.0535 10₂⁴24 kg
we substitute
R_cm = 1 / 6.0535 10²⁴ (0 + 7.35 10²² 3.84 )
R_cm = 4.66 10⁶ m
The answer is 5. To find the advantage you just divide 20 by 4.