Choices 1, 2, and 4 . . . . . Yes
Choices 3 and 5 . . . . . No
Answer:
Hello your question is poorly written below is the complete question
Suppose the battery in a clock wears out after moving Ten thousand coulombs of charge through the clock at a rate of 0.5 Ma how long did the clock run on does battery and how many electrons per second slowed?
answer :
a) 231.48 days
b) n = 3.125 * 10^15
Explanation:
Battery moved 10,000 coulombs
current rate = 0.5 mA
<u>A) Determine how long the clock run on the battery. use the relation below</u>
q = i * t ----- ( 1 )
q = charge , i = current , t = time
10000 = 0.5 * 10^-3 * t
hence t = 2 * 10^7 secs
hence the time = 231.48 days
<u>B) Determine how many electrons per second flowed </u>
q = n*e ------ ( 2 )
n = number of electrons
e = 1.6 * 10^-19
q = 0.5 * 10^-3 coulomb ( charge flowing per electron )
back to equation 2
n ( number of electrons ) = q / e = ( 0.5 * 10^-3 ) / ( 1.6 * 10^-19 )
hence : n = 3.125 * 10^15
Car is moving on the glassy slope with constant speed
Now we know that

so acceleration is rate of change in velocity
as we know that velocity is constant here so acceleration is zero
so here

now as we know by Newton's II law

since a = 0

so net force will be ZERO on it during this motion
Newtons third law of motion states that for every action, there is an equal an opposite reaction. This means that the force on back on something is going to be equal in size and opposite in direction.
Answer:
Explanation:
Horizontal displacement
x = 120 t
Vertical position
y = 3610 - 4.9 t²
y = 0 for the ground
0 = 3610 - 4.9 t²
t = 27.14 s
This is the time it will take to reach the ground .
During this period , horizontal displacement
x = 120 x 27.14 m
= 3256.8 m
So packet should be released 3256.8 m before the target.