Answer:
They are...if I'm correct Chemically combined, sorry if I'm wrong.
Answer:
A) The space time coordinate x of the collision in Earth's reference frame is
.
B) The space time coordinate t of the collision in Earth's reference frame is

Explanation:
We are told a rocket travels in the x-direction at speed v=0,70 c (c=299792458 m/s is the exact value of the speed of light) with respect to the Earth. A collision between two comets is observed from the rocket and it is determined that the space time coordinates of the collision are (x',t') = (3.4 x 10¹⁰ m, 190 s).
An event indicates something that occurs at a given location in space and time, in this case the event is the collision between the two comets. We know the space time coordinates of the collision seen from the reference frame of the rocket and we want to find out the space time coordinates in Earth's reference frame.
<em>Lorentz transformation</em>
The Lorentz transformation relates things between two reference frames when one of them is moving with constant velocity with respect to the other. In this case the two reference frames are the Earth and the rocket that is moving with speed v=0,70 c in the x axis.
The Lorentz transformation is




prime coordinates are the ones from the rocket reference frame and unprimed variables are from the Earth's reference frame. Since we want position x and time t in the Earth's frame we need the inverse Lorentz transformation. This can be obtained by replacing v by -v and swapping primed an unprimed variables in the first set of equations




First we calculate the expression in the denominator


then we calculate t




finally we get that

then we calculate x






finally we get that

The color components that will have the lowest index of refraction will be orange.
The final momentum of the ball is 3.8 kgm/s.
<h3>Change in momentum of the ball</h3>
The impulse received by the ball is equal to change in momentum of the ball.
J = ΔP
where;
- J is the impulse
- ΔP is change in momentum
ΔP = P₂ - P₁
P₂ = ΔP + P₁
<h3>Final momentum of the ball</h3>
The final momentum of the ball is calculated as follows;
P₂ = 8 + (- 0.1 x 42)
P₂ = 8 - 4.2
P₂ = 3.8 kgm/s
Learn more about change in momentum here: brainly.com/question/7538238
Answer:
i think its because u gave the almost every answer the same exact thing. all the questions have different ways of moving which means different forces for each one i hope this helps :)
Explanation: