When the Sun's energy moves through space, it reaches Earth's atmosphere and finally the surface. This radiant solar energy warms the atmosphere and becomes heat energy. This heat energy is transferred throughout the planet's systems in three ways: by radiation, conduction, and convection.
In order to overcome an object’s inertia (resistance to change), it must be acted upon by an unbalanced force, so the answer to the problem is letter C.
Answer:
612000 C
Explanation:
Current, I, is given as the rate of flow of charge, that is:
I = Δq / Δt
where q = electric charge
t = time taken
This implies that:
Δq = I * Δt
The battery rating is 170 Ampere-hours, therefore:
Δq = 170 * 1 hour
But 1 hour = 3600 seconds;
=> Δq = 170 * 3600 = 612000 C
The total charge that the battery can provide is 612000 C.
Answer:
true! : )
(i underlined the place where the answer is the other information is just as important but if you do not want to read it you do not have to)
Explanation:
Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases. the greater the mass, the greater the gravitational pull. <u>gravitational pull decreases with an increase in the distance between two objects.</u> Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases.