A robot character that can transform into a car
Answer:

Explanation:
The root mean square velocity of the gas at an equilibrium temperature is given by the following formula:

where,
v = root mean square velocity of molecules:
R = Universal Gas Constant
T = Equilibrium Temperature
M = Molecular Mass of the Gas
Therefore,
For T = T₁ :

For T = T₂ :

Since both speeds are given to be equal. Therefore, comparing both equations, we get:

Explanation:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
A. Getting a full set of valence electrons
Explanation:
The best description of the end result of chemical bonding for most atoms is the getting of a full set of valence electrons.
Atoms reacts with one another in order to complete valence electronic shell.
- The valence electron shell is the outermost energy level of an atom.
- It is from this energy level that electrons are lost or gained to form bonds.
- All atoms wants to be like the noble gases whose valence electronic shell is completely filled up
- This is the crux of chemical bonding
- The attraction that is produced from the interaction leads to bond formation
learn more:
Chemical bond brainly.com/question/10903097
#learnwithBrainly
<u>Answer:</u> The final temperature of the solution is 
<u>Explanation:</u>
The amount of heat released by coffee will be absorbed by aluminium spoon.
Thus, 
To calculate the amount of heat released or absorbed, we use the equation:

Also,
..........(1)
where,
q = heat absorbed or released
= mass of aluminium = 39 g
= mass of coffee = 166 g
= final temperature = ?
= temperature of aluminium = 
= temperature of coffee = 
= specific heat of aluminium = 
= specific heat of coffee= 
Putting all the values in equation 1, we get:
![39\times 0.904\times (T_{final}-24)=-[166\times 4.1801\times (T_{final}-83)]](https://tex.z-dn.net/?f=39%5Ctimes%200.904%5Ctimes%20%28T_%7Bfinal%7D-24%29%3D-%5B166%5Ctimes%204.1801%5Ctimes%20%28T_%7Bfinal%7D-83%29%5D)

Hence, the final temperature of the solution is 