Answer:
Option D
All the above
Explanation:
Depending with the number of occupants in a building, the number of air conditioners required can either be increased or reduced. For instance, if the building is to be a classroom of over 50 students, 1 air-conditioner can't serve effectively. Similarly, the activity of occupants also dictate the amount of air conditioners required since if it's a gym room where occupants exercise often then the air conditioners required is different from if the room was to serve as a lounge. The appliances that also operate in a room require that air conditioners be installed as per the heat that may be generated by the appliances.
Answer:
<em>The temperature will be greater than 25°C</em>
Explanation:
In an adiabatic process, heat is not transferred to or from the boundary of the system. The gain or loss of internal heat energy is solely from the work done on the system, or work done by the system. The work done on the system by the environment adds heat to the system, and work done by the system on its environment takes away heat from the system.
mathematically
Change in the internal energy of a system ΔU = ΔQ + ΔW
in an adiabatic process, ΔQ = 0
therefore
ΔU = ΔW
where ΔQ is the change in heat into the system
ΔW is the work done by or done on the system
when work is done on the system, it is conventionally negative, and vice versa.
also W = pΔv
where p is the pressure, and
Δv = change in volume of the system.
In this case,<em> work is done on the gas by compressing it from an initial volume to the new volume of the cylinder. The result is that the temperature of the gas will rise above the initial temperature of 25°C </em>
Answer:
E= 15 GPa.
Explanation:
Given that
Length ,L = 0.5 m
Tensile stress ,σ = 10.2 MPa
Elongation ,ΔL = 0.34 mm
lets take young modulus = E
We know that strain ε given as



We know that

Therefore the young's modulus will be 15 GPa.
Answer:
I would say that it is forming.
Explanation:
Give brainliest if u can. :S
Answer:
0.447 s²
Explanation:
First, convert to SI units.
(354 mg) (45 km) / (0.0356 kN)
(0.354 g) (45000 m) / (35.6 N)
One Newton is kg m/s²:
(0.354 g) (45000 m) / (35.6 kg m/s²)
(0.000354 kg) (45000 m) / (35.6 kg m/s²)
Simplify:
0.447 s²