Answer:
The answer to this question is 1273885.3 ∅
Explanation:
<em>The first step is to determine the required hydraulic flow rate liquid if working pressure and if a cylinder with a piston diameter of 100 mm is available.</em>
<em>Given that,</em>
<em>The distance = 50mm</em>
<em>The time t =10 seconds</em>
<em>The force F = 10kN</em>
<em>The piston diameter is = 100mm</em>
<em>The pressure = F/A</em>
<em> 10 * 10^3/Δ/Δ </em>
<em> P = 1273885.3503 pa</em>
<em>Then</em>
<em>Power = work/time = Force * distance /time</em>
<em> = 10 * 1000 * 0.050/10</em>
<em>which is =50 watt</em>
<em>Power =∅ΔP</em>
<em>50 = 1273885.3 ∅</em>
Answer:
composition of alpha phase is 27% B
Explanation:
given data
mass fractions = 0.5 for both
composition = 57 wt% B-43 wt% A
composition = 87 wt% B-13 wt% A
solution
as by total composition Co = 57 and by beta phase composition Cβ = 87
we use here lever rule that is
Wα = Wβ ...............1
Wα = Wβ = 0.5
now we take here left side of equation
we will get
= 0.5
= 0.5
solve it we get
Ca = 27
so composition of alpha phase is 27% B
Answer:
The answer is 380.32×10^-6
Refer below for the explanation.
Explanation:
Refer to the picture for brief explanation.
Answer:
Heat flux of CO₂ in cgs
= 170.86 x 10⁻⁹ mol / cm²s
SI units
170.86 x 10⁻⁸ kmol/m²s
Explanation: