Answer: Coefficient= 0.35 per day
Explanation:
To find the bio degradation reaction rate coefficient, we have
k= 
Here, the C lagoon= 20 mg/L
Q in= Q out= 8640 m³/d
C in= 100 mg/L
C out= 20 mg/L
V= 10 ha* 1* 10
V= 10⁵ m³
So, k= 
k= 0.35 per day
Answer:
Upper bounds 22.07 GPa
Lower bounds 17.59 GPa
Explanation:
Calculation to estimate the upper and lower bounds of the modulus of this composite.
First step is to calculate the maximum modulus for the combined material using this formula
Modulus of Elasticity for mixture
E= EcuVcu+EwVw
Let pug in the formula
E =( 110 x 0.40)+ (407 x 0.60)
E=44+244.2 GPa
E=288.2GPa
Second step is to calculate the combined specific gravity using this formula
p= pcuVcu+pwTw
Let plug in the formula
p = (19.3 x 0.40) + (8.9 x 0.60)
p=7.72+5.34
p=13.06
Now let calculate the UPPER BOUNDS and the LOWER BOUNDS of the Specific stiffness
UPPER BOUNDS
Using this formula
Upper bounds=E/p
Let plug in the formula
Upper bounds=288.2/13.06
Upper bounds=22.07 GPa
LOWER BOUNDS
Using this formula
Lower bounds=EcuVcu/pcu+EwVw/pw
Let plug in the formula
Lower bounds =( 110 x 0.40)/8.9+ (407 x 0.60)/19.3
Lower bounds=(44/8.9)+(244.2/19.3)
Lower bounds=4.94+12.65
Lower bounds=17.59 GPa
Therefore the Estimated upper and lower bounds of the modulus of this composite will be:
Upper bounds 22.07 GPa
Lower bounds 17.59 GPa
Answer:
15.24°C
Explanation:
The quality of any heat pump pumping heat from cold to hot place is determined by its coefficient of performance (COP) defined as

Where Q_{in} is heat delivered into the hot place, in this case, the house, and W is the work used to pump heat
You can think of this quantity as similar to heat engine's efficiency
In our case, the COP of our heater is

Where T_{house} = 24°C and T_{out} is temperature outside
To achieve maximum heating, we will have to use the most efficient heat pump, and, according to the second law of thermodynamics, nothing is more efficient that Carnot Heat Pump
Which has COP of:

So we equate the COP of our heater with COP of Carnot heater

Rearrange the equation

Solve this simple quadratic equation, and you should get that the lowest outdoor temperature that could still allow heat to be pumped into your house would be
15.24°C