I think this is how you do it:
<h2>Question:- </h2>
A solution has a pH of 5.4, the determination of [H+].
<h2>Given :- </h2>
- pH:- 5.4
- pH = - log[H+]
<h2>To find :- concentration of H+</h2>
<h2>Answer:- Antilog(-5.4) or 4× 10-⁶</h2>
<h2>Explanation:- </h2><h3>Formula:- pH = -log H+ </h3>
Take negative to other side
-pH = log H+
multiple Antilog on both side
(Antilog and log cancel each other )
Antilog (-pH) = [ H+ ]
New Formula :- Antilog (-pH) = [+H]
Now put the values of pH in new formula
Antilog (-5.4) = [+H]
we can write -5.4 as (-6+0.6) just to solve Antilog
Antilog ( -6+0.6 ) = [+H]
Antilog (-6) × Antilog (0.6) = [+H]

put the value in equation
![{10}^{ - 6} \times 4 = [H+] \\ 4 \times {10}^{ - 6} = [H+]](https://tex.z-dn.net/?f=%20%7B10%7D%5E%7B%20-%206%7D%20%20%20%5Ctimes%204%20%3D%20%5BH%2B%5D%20%5C%5C%204%20%5Ctimes%20%20%20%7B10%7D%5E%7B%20-%206%7D%20%20%3D%20%5BH%2B%5D)
Newton's first law of motion states that an object at rest will remain at rest unless an unbalanced force acts on it. If you apply balanced forces on the object there would be no net force. The body does not accelerate but instead stays at rest.
Another way to look at this problem is to use Newton's second law of motion. The first law states that
, where
is the acceleration
is the net force and
is the mass of the object.
When F is zero, the acceleration of the object is zero. This means that if the object had a velocity of zero before the balanced forces started acting, the velocity will stay at zero after the balanced forces begin to act. If the object was moving at a constant velocity before the balanced forces started acting on it, it would continue at that constant velocity after the balanced forces begin to act.
V ( NaOH ) = mL ?
M ( NaOH ) = 0.100 M
V ( HCl ) = 9.00 mL / 1000 => 0.009 L
M ( HCl ) = 0.0500 M
number of moles HCl:
n = M x V
n = 0.009 x 0.0500 => 0.00045 moles HCl
mole ratio:
<span>HCl + NaOH = NaCl + H2O
</span>
1 mole HCl ---------------- 1 mole NaOH
0.00045 moles HCl ----- ??
0.00045 x 1 / 1 => 0.00045 moles of NaOH
M = n / V
0.100 = 0.00045 / V
V = 0.00045 / 0.100
V = 0.0045 L
1 L ------------ 1000 mL
0.0045 L ----- ??
0.0045 x 1000 / 1 => 4.5 mL of NaOH