0.05 is the answer to your question
Answer: No, a<span>t high pressures, volume of a real gas does not compare with the volume of an ideal gas under the same conditions.
Reason:
For an ideal gas, there should not be any intermolecular forces of interaction. However, for real gases there are intermolecular forces of interaction like dipole-dipole and dipole-induced dipole. Further, at high pressures, molecules are close by. Hence, extend of these intermolecular forces is expected to be high. This results in decreases in volume of real gas. Thus, </span>volume of a real gas does not compare with the volume of an ideal gas under the same conditions.
Answer:
![PV_{m} = RT[1 + (b-\frac{a}{RT})\frac{1}{V_{m} } + \frac{b^{2} }{V^{2} _{m} } + ...]](https://tex.z-dn.net/?f=PV_%7Bm%7D%20%3D%20RT%5B1%20%2B%20%28b-%5Cfrac%7Ba%7D%7BRT%7D%29%5Cfrac%7B1%7D%7BV_%7Bm%7D%20%7D%20%2B%20%5Cfrac%7Bb%5E%7B2%7D%20%7D%7BV%5E%7B2%7D%20_%7Bm%7D%20%7D%20%2B%20...%5D)
B = b -a/RT
C = b^2
a = 1.263 atm*L^2/mol^2
b = 0.03464 L/mol
Explanation:
In the given question, we need to express the van der Waals equation of state as a virial expansion in powers of 1/Vm and obtain expressions for B and C in terms of the parameters a and b. Therefore:
Using the van deer Waals equation of state:

With further simplification, we have:
![P = RT[\frac{1}{V_{m}-b } - \frac{a}{RTV_{m} ^{2} }]](https://tex.z-dn.net/?f=P%20%3D%20RT%5B%5Cfrac%7B1%7D%7BV_%7Bm%7D-b%20%7D%20-%20%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%5E%7B2%7D%20%7D%5D)
Then, we have:
![P = \frac{RT}{V_{m} } [\frac{1}{1-\frac{b}{V_{m} } } - \frac{a}{RTV_{m} }]](https://tex.z-dn.net/?f=P%20%3D%20%5Cfrac%7BRT%7D%7BV_%7Bm%7D%20%7D%20%5B%5Cfrac%7B1%7D%7B1-%5Cfrac%7Bb%7D%7BV_%7Bm%7D%20%7D%20%7D%20-%20%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%7D%5D)
Therefore,
![PV_{m} = RT[(1-\frac{b}{V_{m} }) ^{-1} - \frac{a}{RTV_{m} }]](https://tex.z-dn.net/?f=PV_%7Bm%7D%20%3D%20RT%5B%281-%5Cfrac%7Bb%7D%7BV_%7Bm%7D%20%7D%29%20%5E%7B-1%7D%20-%20%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%7D%5D)
Using the expansion:

Therefore,
![PV_{m} = RT[1+\frac{b}{V_{m} }+\frac{b^{2} }{V_{m} ^{2} } + ... -\frac{a}{RTV_{m} }]](https://tex.z-dn.net/?f=PV_%7Bm%7D%20%3D%20RT%5B1%2B%5Cfrac%7Bb%7D%7BV_%7Bm%7D%20%7D%2B%5Cfrac%7Bb%5E%7B2%7D%20%7D%7BV_%7Bm%7D%20%5E%7B2%7D%20%7D%20%2B%20...%20-%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%7D%5D)
Thus:
equation (1)
Using the virial equation of state:
![P = RT[\frac{1}{V_{m} }+ \frac{B}{V_{m} ^{2}}+\frac{C}{V_{m} ^{3} }+ ...]](https://tex.z-dn.net/?f=P%20%3D%20RT%5B%5Cfrac%7B1%7D%7BV_%7Bm%7D%20%7D%2B%20%5Cfrac%7BB%7D%7BV_%7Bm%7D%20%5E%7B2%7D%7D%2B%5Cfrac%7BC%7D%7BV_%7Bm%7D%20%5E%7B3%7D%20%7D%2B%20...%5D)
Thus:
equation (2)
Comparing equations (1) and (2), we have:
B = b -a/RT
C = b^2
Using the measurements on argon gave B = −21.7 cm3 mol−1 and C = 1200 cm6 mol−2 for the virial coefficients at 273 K.
[/tex] = 0.03464 L/mol
a = (b-B)*RT = (34.64+21.7)*(1L/1000cm^3)*(0.0821)*(273) = 1.263 atm*L^2/mol^2
To find the answer you need to use the formula that will help you to find the density. Density = mass/volume
d = 43.2g/96.5mL = 0.45g/mL
The correct answer should be Letter B