Answer:
Mass of the silver will be equal to 46.70 gram
Explanation:
We have given heat required to raise the temperature of silver by 24°C is 269 J , so 
Specific heat of silver = 0.240 J/gram°C
We have to find the mass of silver
We know that heat required is given by
, here m is mass, c is specific heat of silver and
is rise in temperature
So 
m = 46.70 gram
So mass of the silver will be equal to 46.70 gram
Answer:
2.5 m/s²
Explanation:
You can solve the following equation: F=ma for acceleration.
You'll be left with this:
a=F/m
And then you substitute the force and the doubled mass
a=500N/200kg
a=2.5 m/s²
Force on the particle is defined as the application of the force field of one particle on another particle. the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.
<h3>What is electric force?</h3>
Force on the particle is defined as the application of the force field of one particle on another particle. It is a type of virtual force.
The electric force in the second case will be the same as in the first case. Therefore the force on the particle will be the same.



Hence the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.
To learn more about the electric force refer to the link;
brainly.com/question/1076352
8) the energy released by fusion is generally 3 to 4 times larger than with fission. Fission has very few by-products but fusion releases large amounts of radioactive particles because it starts with large nuclei.
9) Alpha particles are 2 protons and 2 neutrons all put together. It's really the nucleus of a helium atom. It is most dangerous if you ingest it but it can be stopped with a sheet of paper so outside the body it's not as dangerous as others and due to its size it can't get very far in the air before hitting air molecules
beta particles are high energy electrons or positrons. They travel further due to their small size but can be stopped by a thin barrier of plastic or wood.
Gamma rays are high frequency photons (light) They are stopped by metal plates and go through human tissue. They are quite dangerous.
10) The mass that is lost in chemical reactions is very small. Solve E=mc² for mass and you get m=E/c². This says the mass you lose is equal to the energy you gained divided by the speed of light squared. c² is a VERY big number so you need a lot of energy produced to notice it. Chemical reactions are simply too inefficient to get that much energy out.
11)You need high temperatures for fusion because you're trying to push two atoms together (to "fuse" them as the name suggests) The electrons in one atom repel the other electrons in the other atoms. When stripped down to only protons, you still have to overcome this repulsion (Coulomb repulsion). High temperatures means high velocity of the particles in the plasma. This gives them enough "oomph" to get close enough to fuse. Once close enough to each other, the nuclear force takes over and overwhelms the Coulomb repulsion and the nuclei fuse and release energy in doing so.