Answer:
Yes
Explanation:
If lamp A burnt out there would still be a wire above it that connects lamp B and C to the power source
Answer: 8000N
Explanation: since it is frictionless that means it has 100% efficiency therefore the mechanical advantage is 1 meaning the load equals to the effort
<span>Its the impact theory.
It suggests that the moon resulted from the collision of two protoplanets, or embryonic worlds. One of those was the just-forming Earth, and the other was a Mars-size object called Theia. The moon then coalesced from the debris, thus giving it its irregular shape.</span>
Answer:
a) see attached, a = g sin θ
b)
c) v = √(2gL (1-cos θ))
Explanation:
In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by
Wₓ = m a
W sin θ = m a
a = g sin θ
b) The diagram is the same, the only thing that changes is the angle that is less
θ' = 9/2 θ
c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.
The easiest way to find linear speed is to use conservation of energy
Highest point
Em₀ = mg h = mg L (1-cos tea)
Lowest point
Emf = K = ½ m v²
Em₀ = Emf
g L (1-cos θ) = v² / 2
v = √(2gL (1-cos θ))
Answer:
1. B
2. A
Explanation:
1. The displacement is the change in position. At t = 0, x = 1.0. At t = 8.0, x = 6.0. So from t=0 to t=8, Δx = 6.0 − 1.0 = 5.0.
2. The instantaneous velocity is the slope of the tangent line at any point of a position vs. time graph.
The average velocity is the displacement divided by the time interval.