The mass of NaCl sample has been 24.3 g. Thus, option A is correct.
The heat of fusion has been the amount of heat required to convert 1 mole of substance into solid to liquid state.
The heat required has been given as:

<h3>Computation for the mass of NaCl</h3>
The given solution has heat of fusion, 
The heat required to melt the sample has been, 
Substituting the values for the mass of NaCl

The mass of NaCl sample has been 24.3 g. Thus, option A is correct.
Learn more about heat of fusion, here:
brainly.com/question/87248
Answer:
E) All of the above.
Explanation:
Hello,
Since the acidic nature of the HCl implies its corrosiveness, when it is in contact with the skin and eyes the burning starts immediately, so gloves and goggles must be worn. Next, the fuming hydrochloric acid (37% by mass) is volatile so it gives off even when dissolved into water, so it must be used in the fume hood. Then, since vapors are produced during the chemical reaction, an overpressure could be attained, that's why we must keep the glass sash of the fume hood between us and the vial. As a common risk, the vial could be dropped causing the hydrochloric acid to splash, so we must keep the vial well inside the hood.
Best regards.
Molarity of solution is mathematically expressed as,
M =

We know that volume = mass/density
Given: mass of solution = 100 g, Density = 1.34 g/ml
∴ volume = 100/1.34 = 88.49 ml = 0.08849 l
Also, we know that molecular weight of sucrose = 342.3 g/mol
∴M =

= 6.979 M
Thus, molarity of solution is 6.979 M
Answer:
0.259 kJ/mol ≅ 0.26 kJ/mol.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 100.0 g).
c is the specific heat of water (c of ice = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 21.56°C - 25.0°C = -3.44°C).
<em>∵ Q = m.c.ΔT</em>
∴ Q = (100.0 g)(4.186 J/g.°C)(-3.44°C) = -1440 J = -1.44 kJ.
<em>∵ ΔH = Q/n</em>
n = mass/molar mass = (100.0 g)/(18.0 g/mol) = 5.556 mol.
∴ ΔH = (-1.44 kJ)/(5.556 mol) = 0.259 kJ/mol ≅ 0.26 kJ/mol.