Answer:
The kinetic energy of an object is also measured in joules. Anything that is moving has kinetic energy, but various factors affect how much kinetic energy an object has. The first factor is speed. If two identical objects are moving at different speeds, the faster object has more kinetic energy. In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
Explanation:
When the specific heat capacity of the water is 4.18 J/g.°C so, we are going to use this formula to get the heat for cooling three phases changes from steam to liquid and from liquid to ice (solid) :
when Q = M*C*ΔT
Q is the heat in J
and M is the mass in gram = 1 mol H2O * 18 g/mol(molar mass) = 18 g
C is the specific heat J/g.°C
ΔT is the change in temperature
Q = Mw *[ ( Csteam * ΔTsteam)+(Cw*ΔTw) + (Cice * ΔT ice)]
= 18 g * [(2.01 * (155-100°C)) + (4.18 * (100-0°C)) + (2.09 * (0 - 55 °C))]
∴Q = 7444.8 J
and when we know that the heat of fusion for water = 334J/g
and heat of vaporization for water = 2260J/g
∴Q for the two phases changes = M * (2260+334)
= 18 * (2260+334)
= 46692 J
∴ Q total = 7444.8 + 46692 = 54136.8 J
Answer:
There will be one Al3+ ion.
There will be 3 NO3- ions
Explanation:
Dissociation equation:
Al(NO₃)₃ → Al³⁺ + 3NO₃¹⁻
When aluminium nitrate dissociate it produces one silver ion (Al³⁺) and three (NO₃¹⁻) ions.
Properties of Al(NO₃)₃:
It is inorganic compound having molecular mass 169.87 g/mol.
It is white odor less compound.
Its density is 4.35 g/mL.
Its melting and boiling points are 120°C and 440°C.
It is soluble in water.
It is sued to treat infections.
It is used in the photographic films.
It s toxic and must be handled with great care.
Answer:
vacuoles
Explanation:
Vacuoles are not only found in animal and plant cells, but on every given diagram vacuoles are huge and singular on a plant cell. Animals however, there are multiple and are much smaller
KE=1/2*mass*velocity^2
So u do 1/2 * 1 * 30^2
1/2 * 1 * 900
= 450kgm/s
P.s. I'm not sure if I would have to convert kg to g.
Anyways hope this helped