Answer:
2.43J
Explanation:
Given parameters:
Mass of the arrow = 0.155kg
Velocity = 31.4m /s
Unknown:
Kinetic energy when it leaves the bow = ?
Solution:
The kinetic energy of a body is the energy in motion of the body;
it can be derived using the expression below:
K.E =
m v²
m is the mass
v is the velocity
Solve for K.E;
K.E =
x 0.155 x 31.4 = 2.43J
A real cubic expansivity is an increase in the volume of a liquid per unit volume per degree rise in temperature when heated in an inexpansible vessel.
Answer:
#See solution for details.
Explanation:
1.
Tools:
.
:Calculate the speed of the wave using the time,
it takes to travel along the rope. Rope's length,
is measured using the meter stick.
-Attach one end of rope to a wall or post, shake from the unfixed end to generate a pulse. Measure the the time it takes for the pulse to reach the wall once it starts traveling using the stopwatch.
-Speed of the pulse can then be obtained as:

: Apply force of known value to the rope then use the following relation equation to find the speed of a pulse that travels on the rope.

-Use the measuring stick and measuring scale to determine
values of the rope then obtain
.
-Use the force measuring constant to determine
. These values can the be substituted in
to obtain 
The potential energy is defined as the energy is contained in the body due to the height over the surface of the earth and it is calculated from the equation

<em>where:</em>
- PE: the potential energy in Joules.
- m: the mass of the body in kg.
- g: the acceleration due to the gravity in m/

- h: the height of the body over the earth in meters.
<em>in our problem:</em>
