True. That is how powerful the sun is. But it will explode in only about 5 billion years.
Answer:

Explanation:
<u>Vertical Launch Upwards</u>
In a vertical launch upwards, an object is launched vertically up from a height H without taking into consideration any kind of friction with the air.
If vo is the initial speed and g is the acceleration of gravity, the maximum height reached by the object is given by:

The object referred to in the question is thrown from a height H=0 and the maximum height is hm=77.5 m.
(a)
To find the initial speed we solve for vo:



(b)
The maximum time or the time taken by the object to reach its highest point is calculated as follows:



Answer:
F = 20.4 i ^
Explanation:
This exercise can be solved using the ratio of momentum and amount of movement.
I = F t = Dp
Since force and amount of movement are vector quantities, each axis must be worked separately.
X axis
Let's look for speed
cos 45 = vₓ / v
vₓ = v cos 45
vₓ = 8 cos 45
vₓ = 5,657 m / s
We write the moment
Before the crash p₀ = m vₓ
After the shock
= -m vₓ
The variation of the moment Δp = mvₓ - (-mvₓ) = 2 m vₓ
The impulse on the x axis Fₓ t = Δp
Fₓ = 2 m vₓ / t
Fx = 2 0.450 5.657 / 0.250
Fx = 20.4 N
We perform the same calculation on the y axis
sin 45 = vy / v
vy = v sin 45
vy = 8 sin 45
vy = 5,657 m / s
We calculate the initial momentum po = m 
Final moment
= m
Variations moment Δp = m
- m
= 0
Force in the Y-axis
= 0
Therefore the total force is
F = fx i ^ + Fyj ^
F = Fx i ^
F = 20.4 i ^