For the first part of this question, consider that "weight" can be described as mass x acceleration of gravity. Weight is expressed in Newtons. To solve for mass in this case, simply divide 9800N by 9.8m/s^2 (Earth's gravitational acceleration). This will give you a mass of 1000 kg. This mass is moved due to the net force supplied by the normal force from the rocket "pushing" off of Earth.
For the second part, we will use the equation F = ma, which is Newton's second law. For this, we know the m, or mass, is 1000 kg. Also, we know the a, or acceleration, will be 4 m/s^2. To solve for force, we will multiply both of these values. This gives a force of 4000 N. I hope this clears things up!
Answer:
♕ 
☃ 
- Frequency ( f ) = 7 Hertz
- Wavelength ( λ ) = 42m
♨ 
☄ 
✧ 
~Plug the known values and then multiply!
↦ 
↦ 
☥ 
---------------------------------------------------------------
❁ 
- Frequency ( f ) : The number of complete waves , set up in a medium in one second is called frequency of the wave. The SI unit of frequency is Hertz ( Hz ). For example : if a sound wave completes 15 compressions and 15 rarefactions in one second , it's frequency is 15 Hz.
- Wavelength ( λ ) : The distance between two consecutive troughs or crests in a transverse wave or the distance between two consecutive compressions or rarefactions in a longitudinal wave us called wavelength. It is the distance travelled by a wave in a time equal to it's time period. It's SI unit is metre ( m ).
- Wave velocity ( v ) : The velocity with which a wave propagates in a medium is called wave velocity. It's SI unit is m/s.
# KILL : Excuses
KISS : Opportunities
MARRY : Goals
♪ Hope I helped! ♡
☂ Have a wonderful day / night ! ツ
✎
✔
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Everyone knows that one of their favorite past times is sitting in front of the television and watching movies, shows, or playing video games. However with this almost motionless, lazy activity comes a great deal of static physics and mechanics.
When you are sitting down enjoying whatever show it is you may be watching, you actually have several forces acting on you concurrently. For example, by sitting on the couch with no extra weight on you, your weight is equivalent to the normal force, or the force of the couch on you. In addition to the force of the couch of you, if you are leaning on an arm or laying down, a similar force acts on you, except at an angle or incline. The general rule for laying on the couch watching television is that whatever force you exert on an object, that object exerts the same force in the opposite direction, or 180 degrees around.
Answer:
to a warm front. Remember to include all data collected on warm fron … ... Remember to include all data collected on warm fronts in this activity to support your answer (examples: interaction of air masses, air pressure, cloud cover, temperature behind/ahead of front, wind direction, precipitation, etc. 1
Explanation: