1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis23 [38]
3 years ago
15

Water (density p-1000 is discharging from through a hole at the bottom of a graduated 71 cylinder. The mass flow rate exiting th

e container may be approximated by: Where Cd is the dimensionless discharge coefficient, A, is the area of the discharge hole, g is the acceleration due to gravity, and y is the water height in the container. The diameter of the graduated cylinder is 8 cm.
For the following givens, use matlab or a spreadsheet to estimate the time to empty half the water from the container.

For partial credit, perform a simple calculation to estimate an amount of time known to be too short but greater than zero.

C,-0.6 2 ,-0.04 cm g 9.8 m/s/s

Yinitial20cm

Engineering
1 answer:
alexira [117]3 years ago
4 0

Answer:

Please see attachment

Explanation:

Please see attachment

You might be interested in
• Build upon the results of problem 3-85 to determine the minimum factor of safety for fatigue based on infinite life, using the
Rudik [331]

Answer:

minimum factor of safety for fatigue is = 1.5432

Explanation:

given data

AISI 1018 steel cold drawn as table

ultimate strength Sut = 63.800 kpsi

yield strength Syt = 53.700 kpsi

modulus of elasticity E = 29.700 kpsi

we get here

\sigma a = \sqrt{(\sigma a \times kb)^2+3\times (za\times kt)^2}    ...........1

here kb and kt = 1 combined bending and torsion fatigue factor

put here value and we get

\sigma a =  \sqrt{(12 \times 1)^2+3\times (0\times 1)^2}  

\sigma a = 12 kpsi

and

\sigma m = \sqrt{(\sigma m \times kb)^2+3\times (zm\times kt)^2}     ...........2

put here value and we get

\sigma m = \sqrt{(-0.9 \times 1)^2+3\times (10\times 1)^2}  

\sigma m = 17.34 kpsi

now we apply here goodman line equation here that is

\frac{\sigma m}{Sut} +  \frac{\sigma a}{Se} = \frac{1}{FOS}     ...................3

here Se = 0.5 × Sut

Se = 0.5 × 63.800 = 31.9 kspi

put value in equation 3 we get

\frac{17.34}{63.800} +  \frac{12}{31.9} = \frac{1}{FOS}  

solve it we get

FOS = 1.5432

6 0
3 years ago
I am trying to test out the software Classroom relay and I am just ask if there is any way kids can stop Classroom relay form se
Inessa05 [86]

Answer:

What is classroom relay?

Plz answer in ch-at

Explanation:

3 0
3 years ago
Read 2 more answers
Methane gas is 304 C with 4.5 tons of mass flow per hour to an uninsulated horizontal pipe with a diameter of 25 cm. It enters a
Arada [10]

Answer:

a) h_c = 0.1599 W/m^2-K

b) H_{loss} = 5.02 W

c) T_s = 302 K

d) \dot{Q} = 25.125 W

Explanation:

Non horizontal pipe diameter, d = 25 cm = 0.25 m

Radius, r = 0.25/2 = 0.125 m

Entry temperature, T₁ = 304 + 273 = 577 K

Exit temperature, T₂ = 284 + 273 = 557 K

Ambient temperature, T_a = 25^0 C = 298 K

Pipe length, L = 10 m

Area, A = 2πrL

A = 2π * 0.125 * 10

A = 7.855 m²

Mass flow rate,

\dot{ m} = 4.5 tons/hr\\\dot{m} = \frac{4.5*1000}{3600}  = 1.25 kg/sec

Rate of heat transfer,

\dot{Q} = \dot{m} c_p ( T_1 - T_2)\\\dot{Q} = 1.25 * 1.005 * (577 - 557)\\\dot{Q} = 25.125 W

a) To calculate the convection coefficient relationship for heat transfer by convection:

\dot{Q} = h_c A (T_1 - T_2)\\25.125 = h_c * 7.855 * (577 - 557)\\h_c = 0.1599 W/m^2 - K

Note that we cannot calculate the heat loss by the pipe to the environment without first calculating the surface temperature of the pipe.

c) The surface temperature of the pipe:

Smear coefficient of the pipe, k_c = 0.8

\dot{Q} = k_c A (T_s - T_a)\\25.125 = 0.8 * 7.855 * (T_s - 298)\\T_s = 302 K

b) Heat loss from the pipe to the environment:

H_{loss} = h_c A(T_s - T_a)\\H_{loss} = 0.1599 * 7.855( 302 - 298)\\H_{loss} = 5.02 W

d) The required fan control power is 25.125 W as calculated earlier above

5 0
3 years ago
How do we find percentage error in measuring voltage across a resistor​
Black_prince [1.1K]

Answer:

  use the percentage error relation

Explanation:

The percentage error in anything is computed from ...

  %error = ((measured value)/(accurate value) -1) × 100%

__

The difficulty with voltage measurements is that the "accurate value" may be hard to determine. It can be computed from the nominal values of circuit components, but there is no guarantee that the components actually have those values.

Likewise, the measuring device may have errors. It may or may not be calibrated against some standard, but even measurement standards have some range of possible error.

6 0
3 years ago
Read 2 more answers
An industrial plant consists of several 60 Hz single-phase motors with low power factor. The plant absorbs 600 kW with a power f
Gelneren [198K]

Answer:

(a) Q=332 kvar and C=5.66 uF

(b) pf=0.90 lagging

Explanation:

Given Data:

P=600kW

V=12.47kV

f=60Hz

pf_{old} =0.75

pf_{new} =0.95

(a) Find the required kVAR rating of a capacitor

\alpha _{old}=cos^{-1}(0.75) =41.41°

\alpha _{new}=cos^{-1}(0.95) =18.19°

The required compensation reactive power can be found by

Q=P(tan(\alpha_{old}) - tan(\alpha_{new}))

Q=600(tan(41.41) - tan(18.19))

Q=332 kvar

The corresponding capacitor value can be found by

C=Q/2\pi fV^{2}

C=332/2*\pi *60*12.47^{2}

C=5.66 uF

(b) calculate the resultant supply power factor

First convert the hp into kW

P_{mech} =250*746=186.5 kW

Find the electrical power (real power) of the motor

P_{elec} =P_{mech}/n

where n is the efficiency of the motor

P_{elec} =186.5/0.80=233.125 kW

The current in the motor is

I_{m} =(P/\*V*pf)

The pf of motor is 0.85 Leading

Note that represents the angle in complex notation (polar form)

I_{m} =(233.125/12.47*0.85)

I_{m}=18.694+11.586j A

Now find the Load current

pf of load is 0.75 lagging (notice the minus sign)

I_{load} =(600/12.47*0.75)

I_{load} =48.115-42.433j A

Now the supply current is the current flowing in the load plus the current flowing in the motor

I_{supply} =I_{m} + I_{load}

I_{supply}= (18.694+11.586)+(48.115-42.433)

I_{supply} =66.809-30.847j A

or in polar form

I_{supply} =73.58°

Which means that the supply current lags the supply voltage by 24.78

therefore, the supply power factor is

pf=cos(24.78)=0.90 lagging

Which makes sense because original power factor was 0.75 then we installed synchronous motor which resulted in improved power factor of 0.90

8 0
4 years ago
Other questions:
  • Air is compressed adiabatically from p1 1 bar, T1 300 K to p2 15 bar, v2 0.1227 m3 /kg. The air is then cooled at constant volum
    13·1 answer
  • Suppose an underground storage tank has been leaking for many years, contaminating a groundwater and causing a contaminant conce
    8·1 answer
  • A contractor is planning on including several skylights in each unit of a residential development. What type of worker would she
    12·1 answer
  • Show the ERD with relational notation with crowfoot. Your ERD must show PK, FKs, min and max cardinality, and correct line types
    13·1 answer
  • Why do we write proton ions first before electron ions? <br>​
    10·1 answer
  • You are an engineer at company XYZ, and you are dealing with the need to determine the maximum load you can apply to a set of bo
    13·1 answer
  • What does STP and NTP stands for in temperature measurement?
    15·1 answer
  • An air conditioning system operating on reversed carnot cycle is required to remove heat from the house at a rate of 32kj/s to m
    5·1 answer
  • A private plane pilot is what kind of individual transportation position? professional level mid-level entry-level EPA-certified
    9·1 answer
  • A flat plate 1.5 m long and 1.0 m wide is towed in water at 20 o C in the direction of its length at a speed of 15 cm/s. Determi
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!