1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
6

Air enters a compressor operating at steady state at 1 bar, 290 K, with a mass flow rate of 0.1 kg/s and exits at 980 K, 10 bar.

The velocities at the inlet and exit are 10 m/s and 30 m/s, respectively. The air can be modeled as an ideal gas, and potential energy effects can be neglected. If the magnitude of the power input to the compressor is 77 kW, determine the rate of heat transfer, in kW.
Engineering
1 answer:
stiv31 [10]3 years ago
8 0

Answer:

7.615 kW

Explanation:

Solution in pen paper form in the attachment section

You might be interested in
What is hardness and how is it generally tested?
drek231 [11]

Answer:

Hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

Explanation:

Hardness of a material is understood as the resistance that the material opposes to its permanent surface plastic deformation by scratching or penetration. It is always true that the hardness of a material is inversely proportional to the footprint that remains on its surface when a force is applied.

In this sense, the hardness of a material can also be defined as that property of the surface layer of the material to resist any elastic deformation, plastic or destruction due to the action of local contact forces caused by another body (called indenter or penetrator), harder, of certain shape and dimensions, which does not suffer residual deformations during contact.

That is, hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

The following conclusions can be drawn from the previous definition of hardness:  

  1) hardness, by definition, is a property of the surface layer of the material, and is not a property of the material itself;  

  2) the methods of hardness by indentation presuppose the presence of contact efforts, and therefore, the hardness can be quantified within a scale;

  3) In any case, the indenter or penetrator must not undergo residual deformations during the test of hardness measurement of the body being tested.

To determine the hardness of the materials, durometers with different types of tips and ranges of loads are used on the various materials. Below are the most commonly used tests to determine the hardness of the materials.

   Rockwell hardness :

It refers to the Rockwell hardness test, a method with which the hardness or resistance of a material to be penetrated is calculated. It is characterized by being a fast and simple method that can be applied to all types of materials. An optical reader is not required.

    Brinell hardness :

Brinell hardness is a scale that is used to determine the hardness of a material through the indentation method, which consists of penetrating with a hardened steel ball tip into the hard material, a load and for a certain time.  

This test is not very precise but easy to apply. It is one of the oldest and was proposed in 1900 by Johan August Brinell, a Swedish engineer.

    Vickers hardness:

Vickers hardness is a test that is used in all types of solid and thin or soft materials. In this test, a square-shaped pyramid-shaped diamond and a   136° vertex angle are placed on the penetrating equipment.

In this test the hardness measurement is performed by calculating the diagonal penetration lengths.

However, its result is not read directly on the equipment used, therefore, the following formula must be applied to determine the hardness of the material: HV = 1.8544 · F / (dv2).

3 0
3 years ago
C++ - Green Crud Fibonacci programThe following program is to be written with a loop. You are to write this program three times
Fynjy0 [20]

Answer:

Below is the required code:

Explanation:

Using for loop

#include <iostream>

using namespace std;

int main()

{

    //Initial crud size

    int init = 0;

    int newCrud;

    int next=0;

    //Number of days to simulate

    int no_days;

    int day;

    cout << "Enter initial amount of green crud: ";

    cin >> newCrud;

    cout << "Enter number of days to simulate: ";

    cin >> no_days;

    for (day = 10; day<=no_days; day++)

    {

         if (day % 10 == 0)

         {

             next = newCrud + init;

         }

             newCrud = init;

             init = next;

    }

    if (no_days < 5)

    cout << "\nCrud reproduce only after 5 days minimum.Hence the current amount is "

    << newCrud << " pounds.";

    else

    cout << "On day " << no_days << " you have " << init

    << " pounds of green crud." << endl;

    cout << "\nWould you like to continue? (y or n): ";

    cin >> ans;

         return 0;

}

Output:

         Enter initial amount of green crud: 5

         Enter number of days to simulate: 220

    On day 220 you have 10485760 pounds of green crud.

Using while loop

Program:

#include <iostream>

using namespace std;

int main()

{

    char ans='y';

    while (ans == 'Y' || ans == 'y')

    {

         //Initial crud size

         int init = 0;

         int newCrud;

         int next=0;

         //Number of days to simulate

         int no_days;

         int day;

         cout << "Enter initial amount of green crud:

         ";

         cin >> newCrud;

         cout << "Enter number of days to simulate:

         ";

         cin >> no_days;

         for (day = 10; day<=no_days; day++)

         {

             if (day % 10 == 0)

             {

                  next = newCrud + init;

             }

                  newCrud = init;

                  init = next;

         }

         if (no_days < 5)

         cout << "\nCrud reproduce only after 5 days

         minimum.Hence the current amount is "

         << newCrud << " pounds.";

         else

         cout << "On day " << no_days << " you have "

         << init

         << " pounds of green crud." << endl;

         cout << "\nWould you like to continue? (y or

         n): ";

         cin >> ans;

    }

    return 0;

}

Output:

Enter initial amount of green crud: 5

Enter number of days to simulate: 220

On day 220 you have 10485760 pounds of green crud.

Would you like to continue? (y or n): y

Enter initial amount of green crud: 5

Enter number of days to simulate: 225

On day 225 you have 10485760 pounds of green crud.

Using do while loop

Program:

#include <iostream>

using namespace std;

int main()

{

    char ans;

    do

    {

         //Initial crud size

         int init = 0;

         int newCrud;

         int next=0;

         //Number of days to simulate

         int no_days;

         int day;

         cout << "Enter initial amount of green crud: ";

         cin >> newCrud;

         cout << "Enter number of days to simulate: ";

         cin >> no_days;

         for (day = 10; day<=no_days; day++)

         {

             if (day % 10 == 0)

             {

                  next = newCrud + init;

             }

                  newCrud = init;

                  init = next;

         }

         if (no_days < 5)

         cout << "\nCrud reproduce only after 5 days

         minimum.Hence the current amount is "

         << newCrud << " pounds.";

         else

         

         cout << "On day " << no_days << " you have " <<

         init << " pounds of green crud." << endl;

         cout << "\nWould you like to continue? (y or n):

         ";

         cin >> ans;

    } while (ans == 'Y' || ans == 'y');

    return 0;

}

Output:

Enter initial amount of green crud: 5

Enter number of days to simulate: 220

On day 220 you have 10485760 pounds of green crud.

Would you like to continue? (y or n): y

Enter initial amount of green crud: 5

Enter number of days to simulate: 225

On day 225 you have 10485760 pounds of green crud.

7 0
3 years ago
Mahamad Siddiqui sent false emails and letters of recommendation on behalf of individuals without their permission to nominate h
shusha [124]

Mahamad Siddiqui sent false emails and letters of recommendation on behalf of individuals without their permission to nominate himself for the Waterman Award at the National Science Foundation. His earlier emails were offered where he had solicited letters were offered as evidence. Siddiqui claimed that content of earlier emails was hearsay. Do the earlier emails come in is given below

Explanation:

1.Mohamed Siddiqui appeals his convictions for fraud and false statements to a federal agency, and obstruction in connection with a federal investigation.   Siddiqui challenges the district court's admission into evidence of e-mail and foreign depositions.

2.On February 18, 1997, Jodi Saltzman, a special agent with the NSF interviewed Siddiqui at Siddiqui's office at the University of South Alabama.   During the interview, Siddiqui signed a statement admitting that he had nominated himself for the Waterman Award, but that he had permission from Yamada and von Gunten to submit forms on their behalf.   Siddiqui also acknowledged in the statement that Westrick had recommended Siddiqui for a different award, the PECASE Award, but that Siddiqui had changed the wording of the letter to apply to the Waterman Award.   Siddiqui was indicted on April 29, 1997.

3.Siddiqui opposed the taking of the depositions on the grounds that the witnesses' personal presence at trial was necessary, and that Indian travel restrictions for its citizens residing abroad prevented him from traveling to Japan and Switzerland.   Specifically, Siddiqui asserted that because of religious persecution in India his travel to Japan or Switzerland related to the criminal action would put his family members still living in India at risk.   The magistrate judge ruled that the government had carried its burden of showing that Yamada and von Gunten would be unavailable to appear at trial, and instructed that Siddiqui's fear of obtaining a travel visa from India because of the threat of persecution of family members should not preclude the taking of the foreign depositions.

4.Yamada's deposition was taken in Japan on March 6, 1998.   At government expense, Siddiqui's counsel attended the deposition and cross-examined the witness, but was not in telephonic contact with Siddiqui during the deposition.   Yamada testified that on February 1, 1997, she received an e-mail stating that if she received a phone call from the NSF to “please tell good words about me.”   Yamada testified that she knew the e-mail was from Siddiqui because the name on the e-mail had Siddiqui's sender address, and it ended with the name “Mo” which Siddiqui had previously told her was his nickname, and which he had used in previous e-mail.

5.Yamada later admitted to Saltzman that she had not given Siddiqui permission to sign, but had made the earlier representation because she thought Siddiqui would go to jail.

6.During cross-examination of Yamada at the deposition, Siddiqui's counsel introduced an e-mail from Yamada to Siddiqui.   This e-mail contained the same e-mail address for Siddiqui as the e-mail received by Yamada and von Gunten apparently from Siddiqui.

7.Von Gunten's video deposition was taken in Switzerland.   At government expense, Siddiqui's counsel attended the deposition and cross-examined von Gunten.   During the deposition, Siddiqui was in communication with his counsel by telephone.   Von Gunten testified at the deposition that he had not submitted a letter of recommendation in favor of Siddiqui for the Waterman Award, and that he had not given Siddiqui permission to submit such a letter in his name.

8 0
3 years ago
Consider this example of a recurrence relation. A police officer needs to patrol a gated community. He would like to enter the g
SashulF [63]

Answer:

the police officer cruise each streets precisely once and he enters and exit with the same gate.

Explanation:

NB: kindly check below for the attached picture.

The term ''Euler circuit'' can simply be defined as the graph that shows the edge of K once in a finite way by starting and putting a stop to it at the same vertex.

The term "Hamiltonian Circuit" is also known as the Hamiltonian cycle which is all about a one time visit to the vertex.

Here in this question, the door is the vertex and the road is the edge.

The information needed to detemine a Euler circuit and a Hamilton circuit is;

"the police officer cruise each streets precisely once and he enters and exit with the same gate."

Check attachment for each type of circuit and the differences.

7 0
3 years ago
Base course aggregate has a target dry density of 119.7 Ib/cu ft in place. It will be laid down and compacted in a rectangular s
djyliett [7]

Answer:

total weight of aggregate =  5627528 lbs = 2814 tons  

Explanation:

we get  here volume of space to be filled with aggregate that is

volume = 2000 × 48 × 0.5

volume = 48000 ft³

now filling space with aggregate of the density that is

density = 0.95 × 119.7

density = 113.72 lb/ft³

and dry weight of this aggregate is

dry weight = 48000 × 113.72

dry weight = 5458320 lbs

we consider here percent moisture is by weigh

so weight of moisture in aggregate will be

weight of moisture = 0.031 × 5458320

weight of moisture = 169208 lbs

so here total weight of aggregate is

total weight of aggregate = 5458320 + 169208

total weight of aggregate =  5627528 lbs = 2814 tons  

3 0
3 years ago
Other questions:
  • A harmonic oscillator with spring constant, k, and mass, m, loses 3 quanta of energy, leading to the emission of a photon.
    13·1 answer
  • Who can work on a fixed ladder that extends more than 24 feet?
    11·1 answer
  • For a brass alloy, the following engineering stresses produce the corresponding plastic engineering strains prior to necking:
    9·1 answer
  • The rate at which velocity changes is called?
    5·2 answers
  • is sampled at a rate of to produce the sampled vector and then quantized. Assume, as usual, the minimum voltage of the dynamic r
    9·1 answer
  • Carbon dioxide (CO2) expands isothermally at steady state with no irreversibilities through a turbine from 10 bar, 500 K to 2 ba
    15·1 answer
  • New ventures that are based on strategic value, such as valuable technology, are attractive while those with low or no strategic
    12·2 answers
  • Saferty precautions of drill press​
    8·2 answers
  • What is the creative process that helps you overcome writer's block called?
    13·1 answer
  • What are the reasons why fine grained of alkali igneous rocks can not be used in cement
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!