The De broglie wavelength of a thermal neutron at room temperature 300K = 1.5 × A°
<h3>How is the De broglie wavelength of a thermal neutron at room temperature calculated?</h3>
Temperature, T = 300K
Momentum, p = mv
Therefore v = p/m
Energy, E= 1/2 m( p/m) ²
Boltzman Energy= 3/2 KT
3/2KT = 1/2 m(p/m)²
Therefore p =
According to De broglie hypothesis, P = h ÷ λ
Therefore, λ = h ÷
= 6.6× ÷
= 0.15 ×
Therefore the De broglie wavelength of a thermal neutron at room temperature 300K = 1.5 × A°
To learn more about De broglie wavelength, refer: <u>https://brainly.in/question/6131028</u>
#SPJ4
I believe I seen on google if you go to Mather
It is called polarizability. A dipole moment is needed for the molecule or atom due to the distortion of the electron cloud. A dipole is a pair of electrical charges that have opposite signs and during a dipole moment two charges separate.
Answer:
External locus of control
Explanation:
External locus of control is an attitude people possess that makes them attribute their failures or successes to factors other than themselves. The opposite of this type of attitude is the Internal locus of control where the individuals take responsibility for the outcomes of their actions whether good or bad. One good thing about the external locus of control is that when the individuals with this characteristic record successes, they attribute it to others and this presents them as people with team spirit. However, when they record failures, they do not want to take the blame, but rather attribute it to others.
Fred exhibits an external locus of control because he attributed his speeding to other factors like the road signs and GPS instead of fully admitting that it was his fault.
If they are both traveling with the same speed that means that they will reach other in the middle of the line initially between them. In other word, each will have to travel the same amount before they reach other.
Now you can calculate the time it takes for only one locomotive to travel half of the total distance between them, and that time is equal to the time you are looking for.
Use
t = S1/2 / v
where t-time, S-distance traveled , v-velocity