Answer:
Diatomic molecules consist of two atoms that are chemically bonded. The two atoms can be the same or different chemical elements. As for whether or not they are compounds, there is not technically an answer. This is because all compounds are molecules, but not all molecules are compounds. For example diatomic molecules that comprise the chemical compounds nitric acid, carbon monoxide, and hydrogen chloride are made up of two different elements. As you can see, most diatomic molecules are not made up of the same kind of elements and not every diatomic molecule comprises a chemical compound.
hope this helps :)
Explanation:
a. pH=2.07
b. pH=3
c. pH=8
<h3>Further explanation</h3>
pH=-log [H⁺]
a) 0.1 M HF Ka = 7.2 x 10⁻⁴
HF= weak acid
![\tt [H^+]=\sqrt{Ka.M}\\\\(H^+]=\sqrt{7.2.10^{-4}\times 0.1}\\\\(H^+]=8.5\times 10^{-3}\\\\pH=3-log~8.5=2.07](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7BKa.M%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D%5Csqrt%7B7.2.10%5E%7B-4%7D%5Ctimes%200.1%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D8.5%5Ctimes%2010%5E%7B-3%7D%5C%5C%5C%5CpH%3D3-log~8.5%3D2.07)
b) 1 x 10⁻³ M HNO₃
HNO₃ = strong acid
![\tt pH=-log[1\times 10^{-3}]=3](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B1%5Ctimes%2010%5E%7B-3%7D%5D%3D3)
c) 1 x 10⁻⁸ M HCl
![\tt pH=-log[1\times 10^{-8}]=8](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B1%5Ctimes%2010%5E%7B-8%7D%5D%3D8)
Answer:
Following two compounds have Hydrogen Bond Interactions;
1) CH₃(CH₂)₂NH₂ (Propan-1-amine)<span>
2) </span>CH₃(CH₂)₂NH(CH₂)₄CH₃ (N-propylpentan-1-amine)
Explanation:
Hydrogen Bond Interactions are formed between those molecules which has hydrogen atoms covalently bonded to most electronegative atoms like Fluorine, Oxygen and Nitrogen. This direct attachment of Hydrogen to electronegative atom makes it partial positive resulting in hydrogen bonding with neighbor's partial negative most electronegative atom. So, in above selected compounds it can be seen that both compounds contain hydrogen atoms directly attached to Nitrogen atoms, Therefore, allowing them to form Hydrogen Bonding Interactions.
Answer:
ΔE = 73 J
Explanation:
By the first law of thermodynamics, the energy in the system must conserved:
ΔE = Q - W
Where ΔE is the internal energy, Q is the heat flow (positive if it's absorbed by the system, and negative if the system loses heat), and W is the work (positive if the system is expanding, and negative if the system is compressing).
So, Q = + 551 J, and W = + 478 J
ΔE = 551 - 478
ΔE = 73 J