Answer
given,
mass of ball, m = 57.5 g = 0.0575 kg
velocity of ball northward,v = 26.7 m/s
mass of racket, M = 331 g = 0.331 Kg
velocity of the ball after collision,v' = 29.5 m/s
a) momentum of ball before collision
P₁ = m v
P₁ = 0.0575 x 26.7
P₁ = 1.535 kg.m/s
b) momentum of ball after collision
P₂ = m v'
P₂ = 0.0575 x (-29.5)
P₂ = -1.696 kg.m/s
c) change in momentum
Δ P = P₂ - P₁
Δ P = -1.696 -1.535
Δ P = -3.231 kg.m/s
d) using conservation of momentum
initial speed of racket = 0 m/s
M u + m v = Mu' + m v
M x 0 + 0.0575 x 26.7 = 0.331 x u' + 0.0575 x (-29.5)
0.331 u' = 3.232
u' = 9.76 m/s
change in velocity of the racket is equal to 9.76 m/s
Answer:
E. Zero Maximum
Explanation:
At the point of maximum displacement, the speed is zero while the restoring force is maximum. In fact:
- The restoring force is given by
, where k is the spring constant and x is the displacement - at the point of maximum displacement, x is maximum, so F is maximum as well
- the total energy of the system is sum of kinetic energy and elastic potential energy:

where m is the mass of the system and v is the speed. Since E (the total energy) is constant due to the law of conservation of energy, we have that when K increases, U decreases, and viceversa. As a result, when x increases, v decreases, and viceversa. At the point of maximum displacement, x is maximum, so v will have its minimum value (which is zero, since the system is changing direction of motion).
The two components of projectile motion include the following:
<h3>What is a Projectile?</h3>
This is defined as a missile propelled by the application of an external force and allowed to move freely under the influence of gravity and air resistance.
The equation for Horizontal motion Vx = V * cos(α)
Vertical velocity component: Vy = V * sin(α)
Read more about Projectile here brainly.com/question/24216590
Answer:
The correct answer is option 'a' 'The momentum is always conserved while as the kinetic energy may be conserved'
Explanation:
The conservation of momentum is a basic principle in nature which is always valid in an collision between 'n' number of objects if there are no external forces on the system. It is valid for both the cases weather the collision is head on or glancing or weather the object is elastic or inelastic.
The energy is only conserved in a collision that occurs on a friction less surface and the objects are purely elastic. Since in the given question it is mentioned that only the surface is friction less and no information is provided regarding the nature of the objects weather they are elastic or not hence we cannot conclusively come to any conclusion regarding the conservation of kinetic energy as the objects may be inelastic.