Answer:
Therefore the concentration of the reactant after 4.00 minutes will be 0.686M.
Explanation:
The unit of k is s⁻¹.
The order of the reaction = first order.
First order reaction: A first order reaction is a reaction in which the rate of reaction depends only the value of the concentration of the reactant.
![-\frac{d[A]}{dt} =kt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3Dkt)
[A] = the concentration of the reactant at time t
k= rate constant
t= time
Here k= 4.70×10⁻³ s⁻¹
t= 4.00
[A₀] = initial concentration of reactant = 0.700 M
![-\frac{d[A]}{dt} =kt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3Dkt)
![\Rightarrow -\frac{d[A]}{[A]}=kdt](https://tex.z-dn.net/?f=%5CRightarrow%20-%5Cfrac%7Bd%5BA%5D%7D%7B%5BA%5D%7D%3Dkdt)
Integrating both sides
![\Rightarrow\int -\frac{d[A]}{[A]}=\int kdt](https://tex.z-dn.net/?f=%5CRightarrow%5Cint%20-%5Cfrac%7Bd%5BA%5D%7D%7B%5BA%5D%7D%3D%5Cint%20kdt)
⇒ -ln[A] = kt +c
When t=0 , [A] =[A₀]
-ln[A₀] = k.0 + c
⇒c= -ln[A₀]
Therefore
-ln[A] = kt - ln[A₀]
Putting the value of k, [A₀] and t
- ln[A] =4.70×10⁻³×4 -ln (0.70)
⇒-ln[A]= 0.375
⇒[A] = 0.686
Therefore the concentration of the reactant after 4.00 minutes will be 0.686M.
Maybe this example could help you to understand this problem.
https://image.slidesharecdn.com/121howmanyatoms-091201144624-phpapp02/95/12-1-how-many-atoms-17-728....
Lets find the electronegativity difference between the bonded atoms;
C-H = 2.6-2.2 = 0.4
C-F = 4.0-2.6 = 1.4
F-F = 4.0-4.0 = 0
H-O = 3.4-2.2 = 1.2
Here the electronegativity difference is highest for C-F bond hence C-F bond is most polar.
Answer:NaF is ionic. NF3 is covalent. SiF4 is ionic. CaF2 is Ionic and NH4F is also ionic. Ionic compounds transfer electrons whereas covalent compounds share electrons hence the word "co". Also, ionic compounds are formed with metal and nonmetal. Where a covalent is with 2 nonmetals. Only ionic compounds would produce fluoride in water because ionic compounds can dissolve in water and covalent compounds cant.
The answer is 16.75 it rounds to 17 Hope this helps! ;D