When magnesium is burned, it reacts with oxygen in air not with the fire. The fire is the energy needed for the reaction to happen. Magnesium reacts with oxygen forming magnesium oxide. The light emitted from the reaction is because the reaction produced a lot of heat.
<span>Photolysis and hydrolysis. These are two methods that can be used to break down a compound into simpler substances and smaller units.
Water which is used to break the bonds of molecules and split molecules is used from hydrolysis. Hydrolysis is made of three types which include;
1. salt hydrolysis.
2. acid hydrolysis.
3. Base hydrolysis.
Photolysis is well known to use energy from light to split the molecule and the same energy is referred to as photons which are used to break builds of molecules.</span>
Answer:
-12.5 kJ/mol
Explanation:
The free-energy predicts if a reaction is spontaneous or not. If it is, ΔG < 0. When a reaction happens by steps, the free-energy of the global reaction can be calculated by the sum of the free-energy of the steps (Hess law). If it's needed to operations at the reaction the same operation must be done in the value of ΔG (if the reaction is inverted, the signal of ΔG must be inverted).
Phosphocreatine → creatine + Pi ∆G'° = –43.0 kJ/mol
ATP → ADP + Pi ∆G'° = –30.5 kJ/mol (x-1)
--------------------------------------------------------------------------------------
Phosphocreatine → creatine + Pi ∆G'° = –43.0 kJ/mol
Pi + ADP → ATP ∆G'° = 30.5 kJ/mol
The bold compounds are in opposite sides, so they'll be canceled in the sum of the reactions:
Phosphocreatine + ADP → creatine + ATP
∆G'° = -43.0 + 30.5
∆G'° = -12.5 kJ/mol
Answer:
it should be momentum if im not mistaken