(2m west) + (3m south) + (4m east) + (1m north) =
[ (2m west)+(4m east) ] + [ (3m south)+(1m north) ] =
[ (-2m east)+(4m east) ] + [ (3m south)-(1m south) ] =
(2m east) + (2m south)
Now, so far, we have the orthogonal (perpendicular) components of the displacement ... the North/South component and the East/West component.
To combine these, it's time for Pythagoras:
Displacement = √[ (2m)² + (2m)² ]
Displacement = √ (4m² + 4m²)
Diplacement = √8m²
<em>Displacement = 2.83 meters Southeast</em>
Answer:

Explanation:
The normal force exerted on the car by the walls of the cylinder at the bottom of the vertical circle will be such that when substracted to the weight it must give the centripetal force, since at that point on the vertical 
We also know that the equation for the centripetal force is:

Mixing both equations we get:


Which for our values means:

Explanation:
1. The universe consisted of hydrogen and helium initially. This statement is true.
2. It is important to understand radioactive decay in order to understand this question, here's a good analogy:
A snake will shed it's skin, just as an atom will shoot off different parts of itself. It would be very difficult to force that snake to reenter it's skin once it sheds, just as it takes a lot of energy to force <em>fusion</em><em> </em>of atoms and the parts mentioned. In normal circumstances, nuclear decay is one-way.
3. The earth is a giant floating rock in space. It took many many years to gather a bunch of asteroids and dust to make this planet.
4. I shouldn't have to explain this one, it doesn't make much sense.
Answer:
19.5324 MPa
Explanation:
Information provided
Angle between the normal to the slip plane with tensile axis, 
Angle by slip direction with tensile axis,
Critical resolved shear stress,
Applied stress
Shear stress at slip plane
hence crystal won’t yield
Applied stress,
for crystal to yield is given by

Explanation:
Given that,
Radius of the coil, r = 4.2 cm
Number of turns in the coil, N = 500
The magnetic field as a function of time is given by :

Resistance of the coil, R = 640 ohms
We need to find the magnitude of induced emf in the coil as a function of time. It is given by :

Hence, this is the required solution.