Answer:
b. a compound.
Explanation:
Electrolysis is described as a mechanism in which ionic compounds are decomposed into their elements by transmitting a direct electric current via the compound in a liquid state. At the cathode, the cations are reduced and anions at the anode are oxidized. There is an exchange between ions and atoms in the electrolysis process caused by the addition or removal between electrons from the external circuit. As per the question, the original substance is a compound because the electrolysis method is used to obtain pure elements from their respective compound.
2.15 x 10⁻³mL
Explanation:
Given parameter:
Volume of blood sample in uL = 2.15uL
Conversion uL → mL
micro- and milli- are both prefixes of sub-units.
liter is a unit of volume of a substance.
micro - is 10⁻⁶
milli- is of the order 10⁻³
The problem is converting from micro to milli:
if we multiply 10⁻⁶ by 10³ we would have our milli;
1000uL = 1mL
2.15uL : 2.15uL x
= 2.15 x 10⁻³mL
learn more:
Volume brainly.com/question/5055270
#learnwithBrainly
Maybe because gravity has control of each formation of the solarsydtem thats why its just a guess
The statement that defines the specific heat capacity for a given sample is the quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
<h3>What is specific heat capacity?</h3>
Specific heat capacity is the of heat to increase the temperature per unit mass.
The formula to calculate the specific heat is Q = mct.
The options are attached here:
- The temperature of a given sample is 1 %.
- The temperature that a given sample can withstand.
- The quantity of heat that is required to raise the sample's temperature by 1 °C1 °C (Kelvin).
- The quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
Thus, the correct option is 4. The quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
Learn more about specific heat capacity
brainly.com/question/1747943
#SPJ1
The answer is 19.9 grams cadmium.
Assuming there was no heat leaked from the system, the heat q lost by cadmium would be equal to the heat gained by the water:
heat lost by cadmium = heat gained by the water
-qcadmium = qwater
Since q is equal to mcΔT, we can now calculate for the mass m of the cadmium sample:
-qcadmium = qwater
-(mcadmium)(0.850J/g°C)(38.6°C-98.0°C)) = 150.0g(4.18J/g°C)(38.6°C-37.0°C)
mcadmium = 19.9 grams