Answer:
The electric current in the wire is 0.8 A
Explanation:
We solve this problem by applying the formula of the magnetic field generated at a distance by a long and straight conductor wire that carries electric current, as follows:

B= Magnetic field due to a straight and long wire that carries current
u= Free space permeability
I= Electrical current passing through the wire
a = Perpendicular distance from the wire to the point where the magnetic field is located
Magnetic Field Calculation
We cleared (I) of the formula (1):
Formula(2)

a =8cm=0.08m

We replace the known information in the formula (2)

I=0.8 A
Answer: The electric current in the wire is 0.8 A
There is no certain time on how long it takes. Because the factors will always be different and the factors heavily affect the evaporation time. Some factors include: humidity, heat, how the sun is visible (whether clouds are covering it or not)
You need to check the temperature of food being stored in a temperature-controlled environment every four hours. The process of changing a space's temperature is called temperature control.
Cooking food alone may not be enough to avoid food poisoning, though, if the bacteria in food are allowed to grow to large numbers. When the temperature is between 5°C and 63°C, bacteria can grow. The risk zone is the range between 5°C and 63°C.
Temperature control is a process where the passage of heat energy into or out of a space or substance is adjusted to achieve the desired temperature. This process involves measuring or otherwise detecting changes in the temperature of the space (and all of the objects contained therein) or of the substance.
Learn more about temperature here
brainly.com/question/11244611
#SPJ4
Answer:
Electromagnetic induction
Explanation:
The process of generating electric current with a magnetic field. It occurs whenever a magnetic field and an electric conductor move relative to one another so the conductor crosses lines of force in the magnetic field.
Answer:
Length = 2.92 m
Diameter = 0.11 mm
Explanation:
We have
, where:
is the length

We divide the first equation by the second equation to get:


Using this Area, we find the diameter of the wire:



To find the length, we multiply the two equations stated initially:

