If a<span> student used 10 mL water instead of 30 mL for extraction of salt water from mixture, the extraction of salt will be lesser than compared to using 30 mL since less solute will dissolve in 10 mL.</span>
Answer:
680 g/m is the molar mass for the unknown, non electrolyte, compound.
Explanation:
Let's apply the formula for osmotic pressure
π = Molarity . R . T
T = T° absolute (in K)
R = Universal constant gases
π = Pressure
Molarity = mol/L
As units of R are L.atm/mol.K, we have to convert the mmHg to atm
760 mmHg is 1 atm
28.1 mmHg is (28.1 .1)/760 = 0.0369 atm
0.0369 atm = M . 0.082 L.atm/mol.K . 293K
(0.0369 atm / 0.082 mol.K/L.atm . 293K) = M
0.0015 mol/L = Molarity
This data means the mol of solute in 1L, but we have 100mL so
Molarity . volume = mol
0.0015 mol/L . 0.1L = 1.5x10⁻⁴ mole
The molar mass will be: 0.102g / 1.5x10⁻⁴ m = 680 g/m
Answer:
Basically, all phosphates except Sodium phosphates, Potassium phosphates and Ammonium phosphates are insoluble in water. That, of course, includes Magnesium phosphate.
Explanation:
Hope this helped!