We assume the composite figure is a cone of radius 10 inches and slant height 15 inches set atop a hemisphere of radius 10 inches.
The formula for the volume of a cone makes use of the height of the apex above the base, so we need to use the Pythagorean theorem to find that.
h = √((15 in)² - (10 in)²) = √115 in
The volume of the conical part of the figure is then
V = (1/3)Bh = (1/3)(π×(10 in)²×(√115 in) = (100π√115)/3 in³ ≈ 1122.994 in³
The volume of the hemispherical part of the figure is given by
V = (2/3)π×r³ = (2/3)π×(10 in)³ = 2000π/3 in³ ≈ 2094.395 in³
Then the total volume of the figure is
V = (volume of conical part) + (volume of hemispherical part)
V = (100π√115)/3 in³ + 2000π/3 in³
V = (100π/3)(20 + √115) in³
V ≈ 3217.39 in³
The equation that represents the time spent on the exercise by Serena will be t = 10 + s
<h3>How to compute the equation? </h3>
From the information given, it was stated that Serena does 10 minutes of endurance exercises. and that she plans on doing s minutes of strength exercises.
Therefore, the equation that represents the time spent on the exercise will be t = 10 + s
Learn more about equations on:
brainly.com/question/2972832
Answer:
<h3>x = -3</h3>
Step-by-step explanation:
First let us get the equation of the coordinates
y-y0 = m(x-x0)
Using the coordinates ( - 3, 2 ), ( - 1, 0 )
m = 0-2/-1-(-3)
m = -2/2
m = -1
Substitute m = -1 and (-1, 0) into the formula
y - 0 = -1(x+1)
y = -x-1
f(x) = -x-1
Since f(x) = 2
2 = -x-1
-x = 2+1
-x = 3
x = -3
Hence the value of x is -3