Answer:
3. Step 1; An action potential depolarizes the axon terminal at the presynaptic membrane
2. Step 2; Calcium ions enter the axon terminal
4. Step 3; Acetylcholine is released from storage vesicles by exocytosis
5. Step 4; Acetylcholine binds to receptors on the postsynaptic membrane
1. Step 5; Chemically gated ion channels on the postsynaptic membrane are opened
Explanation:
3. The cholinergic synapse starts at the point of arrival of an electrochemical impulse or action potentials at the synaptic knob of the axon terminal of a presynaptic neuron membrane
2. The arrival of the action potential at the axon terminal causes the calcium ion Ca²⁺ channels to open and Ca²⁺ enters into the synaptic knob, resulting in the fusion of the presynaptic membrane and synaptic vesicles
4. The fusion enables the release into the synaptic cleft of many acetylcholine (ACh) transmitter molecules by exocytosis
5. Some of the ACh are transported across the synaptic cleft and bind to postsynaptic neuron membrane embedded ACh receptors
1. The binding of the ACh neurotransmitter molecules to receptors on the membrane of the dendrites of a neuron it leads to the opening of ion channels
Answer:
Term (symbol) Meaning
Standing wave Waves which appear to be vibrating vertically without traveling horizontally. Created from waves with identical frequency and amplitude interfering with one another while traveling in opposite directions.
Node Positions on a standing wave where the wave stays in a fixed position over time because of destructive interference.
Antinode Positions on a standing wave where the wave vibrates with maximum amplitude.
Fundamental frequency Lowest frequency of a standing wave that has the fewest number of nodes and antinodes.
Harmonic A standing wave that is a positive integer multiple of the fundamental frequency.
Explanation:
The answers is 30 miles per hour, the driver is speeding the car up, section-H, 12 minutes, section-D, and 65 miles per hour.