Answer:
Long answer
Proteins are the building blocks of the body, each and every organ muscle and skin and cells are made of proteins. They can also be used for providing energy to the body in a state where other energy sources aren't available.
Fats are stored energy blocks which can be used by the body at its own convenience whenever there is a deficit of energy in the body. They can also be directly burnt to give energy in cases where energy needs of the body are not met by dietary intake
Carbohydrates are the most convenient and preferable source of energy in the body and are easily converted to give out immidiate energy to the body, excess carbohydrates can be converted into fats and stored for later usage as and when required by the body.
Proteins, fats and carbohydrates have many secondary functions and roles in the human body. If you are keen to know anything more specific feel free to ask.
<h3>
Short answer :</h3>
Fats are used for energy after they are broken into fatty acids. Protein can also be used for energy, but the first job is to help with making hormones, muscle, and other proteins.
Answer:
A pH scale reading 13 indicates a strong base.
Explanation:
From my understanding:
1 -4 is a strong acid
4 - 7 is weak acid
7 - 9 is a weak base
9 - 14 is a strong base
Answer: Gas
Explanation:
since the gas molecules arent being forcefully bonded together like a solid would be, and liquids tend to have lower kinetic energy than solids
Answer:
16.933g approximately 17.0 grams
Explanation:
From the simple promotions and given the same compound ascorbic acid (vitamin C)
In the laboratory synthesised ascorbic acid
Mass of carbon = 30.0g
Mas of Oxygen = 40.0g
That is the mass of Oxygen per unit mass of Carbon
Per gram of Carbon we have
(30.0g Carbon)÷30 combines with (40.0g of Oxygen)÷30
That is 4/3g of Oxygen per gram of Carbon
Hence the mass of Oxygen compound that combines with 12.7g of Carbonin natural occurring ascorbic acid (vitamin C) is = 4/3×12.7 = 16.933g approximately 17.0g
Answer:
1.209g of MgO participates
Explanation:
In this problem, we have 0.030 moles of MgO that participates in a particular reaction.
And we are asked to solve for the mass of MgO that participates, that means, we need to convert moles to grams.
To convert moles to grams we need to use molar mass of the compound:
<em>1 atom of Mg has a molar mass of 24.3g/mol</em>
<em>1 atom of O has a molar mass of 16g/mol</em>
<em />
That means molar mass of MgO is 24.3g/mol + 16g/mol = 40.3g/mol
And mass of 0.030 moles of MgO is:
0.030 moles MgO * (40.3g/mol) =
<h3>1.209g of MgO participates</h3>