Explanation:
A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ of the radiation by
E=hf=hcλ(energy of a photon)E=hf=hcλ(energy of a photon),
where E is the energy of a single photon and c is the speed of light. When working with small systems, energy in eV is often useful. Note that Planck’s constant in these units is h = 4.14 × 10−15 eV · s.
Since many wavelengths are stated in nanometers (nm), it is also useful to know that hc = 1240 eV · nm.
These will make many calculations a little easier.
All EM radiation is composed of photons. Figure 1 shows various divisions of the EM spectrum plotted against wavelength, frequency, and photon energy. Previously in this book, photon characteristics were alluded to in the discussion of some of the characteristics of UV, x rays, and γ rays, the first of which start with frequencies just above violet in the visible spectrum. It was noted that these types of EM radiation have characteristics much different than visible light. We can now see that such properties arise because photon energy is larger at high frequencies.
Answer:
[CO] = 7.61x10⁻³M
7.61x10⁻³x10³ = 7.61
Explanation:
For a generic equation aA + bB ⇄ cC + dD, the constant of equilibrium (Kc) is:
![Kc = \frac{[C]^cx[D]^d}{[A]^ax[B]^b}](https://tex.z-dn.net/?f=Kc%20%3D%20%5Cfrac%7B%5BC%5D%5Ecx%5BD%5D%5Ed%7D%7B%5BA%5D%5Eax%5BB%5D%5Eb%7D)
We need to know the molar concentrations in the equilibrium. In the beginning, there is only COCl₂, and its concentration is the number of moles divided by the volume:
[COCl₂] = 7.73/10.0 = 0.773 M
So, the equilibrium will be:
COCl₂(g) ⇆ CO(g) + Cl₂(g)
0.773 0 0 <em>Initial</em>
-x +x +x <em> Reacts</em>
0.773-x x x <em>Equilibrium</em>
Supposing that x<<0.773, then:

7.5x10⁻⁵ = x²/0.773
x² = 5.7975x10⁻⁵
x = √5.7975x10⁻⁵
x = 7.61x10⁻³ M
The supposing is correct, so [CO] = 7.61x10⁻³ x 10³ = 7.61
Answer:
the answer is over water D
Answer:
0.5moles
Explanation:
Given parameters:
Volume of solution= 0.25L
Molarity of solution = 2.00M
Unknown:
Number of moles = ?
Solution:
To solve this problem;
Molarity is the number of moles of solute in a given volume of solution, so
Number of moles = molarity x volume
Now insert the parameters and solve;
Number of moles = 0.25 x 2 = 0.5moles
Answer:
Are u a boy or a girl so we can form a study group and the answer is C