Answer:
37.8 m
Explanation:
At point 0, the ball is at height y₀.
At point 1, the ball is at height 30 m.
At point 2, the ball is at height 0 m.
Given:
y₁ = 30 m
y₂ = 0 m
v₀ = 0 m/s
a = -10 m/s²
t₂ − t₁ = 1.5 s
Find: y₀
Use constant acceleration equation.
y = y₀ + v₀ t + ½ at²
Evaluate at point 1.
y₁ = y₀ + v₀ t₁ + ½ at₁²
30 m = y₀ + (0 m/s) t₁ + ½ (-10 m/s²) t₁²
30 = y₀ − 5t₁²
Evaluate at point 2.
y₂ = y₀ + v₀ t₂ + ½ at₂²
0 m = y₀ + (0 m/s) t₂ + ½ (-10 m/s²) t₂²
0 = y₀ − 5t₂²
y₀ = 5t₂²
Substitute:
y₀ = 5 (1.5 + t₁)²
y₀ = 5 (2.25 + 3t₁ + t₁²)
y₀ = 11.25 + 15t₁ + 5t₁²
30 = 11.25 + 15t₁ + 5t₁² − 5t₁²
30 = 11.25 + 15t₁
t₁ = 1.25
30 = y₀ − 5t₁²
30 = y₀ − 5(1.25)²
y₀ ≈ 37.8
Answer:
Fourth option
Explanation:
They're many different types of energy, from chemical and mechanical to heat and solar energy. But the two most basic types of energy are "kinetic and potential energy" or the fourth option. Kinetic energy is the energy an object has when it is in motion, while potential energy is the energy an object has when it's as rest. These two specific types of energies are the most basic and you can even convert them into many different types of energies, like heat or electrical energy.
Hope this helps.
Answer:
24volts
Explanation:
If a 15-µF capacitor is charged to 40V, the charge across the capacitor can be calculated using the formula;
Q = CV where;
Q is the charge flowing across the capacitor
C is the capacitance of the capacitor. = 15-µF
V is the voltage = 40V
Q = 15×10^-6×40
Q = 0.0006coulombs
If the charge of 0.0006coulombs is then connected across an initially uncharged 25-µF capacitor, the potential difference across the 25-µF can be calculated using the initial expression;
Q = CV
V = Q/C
V = 0.0006/25×10^-6
V = 24Volts
Therefore, the final potential difference across the 25-µF capacitor will be 24volts
Answer:
dependent variables
Explanation:
dependent varibeles are the thing you're measuring and independent variables are the thing you change in the exeriment to get a different dependent variable.
may I get brainliest please? :)
Answer:
P=I*I*R
Where P is power
I is current
R is Resistance
P=2*2*100
P=400W
Explanation:
Power is the rate of doing work.
From the Ohm’s law V=IR
Power=I*I*R