The particle with sharp ends have the slowest rate of deposition
Answer: Option C
<u>Explanation:</u>
As per aerosol physics, deposition is a process where aerosol particles accumulate or settle on solid surfaces. Thereby, it reduces the concentration of particles in the air. Deposition velocity (rate of deposition) defines from F = vc, where v is deposition rate, F denotes flux density and c refers concentration.
Deposition velocity is slowest for particles of intermediate-sized particles because the frictional force offers resistance to the flow. Density is directly proportional to the deposition rate so clearly shows that high-density particles settle faster. Due to friction, round and large-sized particles deposit faster than oval/flattened sediments.
Answer:
Choice a. 1 kg, assuming that all other forces on the object (if any) are balanced.
Explanation:
By Newton's Second Law,
,
where
is the acceleration of the object in
,
is the net force on the object in Newtons, and
is the mass of the object in kilograms.
As a result,
.
Assume that all other forces on this object are balanced. The net force on the object will be
. The net force is constant. Acceleration should also be constant and the same as the average acceleration in the two seconds.
<h3>What is the
average acceleration of this object?</h3>
.
.
<h3>Apply Newton's Second Law to find the mass of the object.</h3>
.
Answer:
A 50 kg ball traveling at 20 m/s would have 4 times more kinetic energy.
A 50 kg ball traveling at 5 m/s would have 4 times less kinetic energy.
A 50 kg person falling at 10 m/s would have the same kinetic energy.
Explanation:
hope this helps:)
See this. I hope you find your answer