Answer:
True
Explanation:
In 2019 was taken the first image of a supermassive black hole in the center of the galaxy M87 with the Event Horizon Telescope, which is a network of radio telescope located in different points of the Earth, with the purpose of making a telescope of the size of the Earth.
A radio telescope is an antenna that is capable to perceive the light in the radio part of the electromagnetic spectrum¹.
It is important to notice that in the picture what it can be seen is the effect that the black hole has in the nearby stars.
Key terms:
¹Electromagnetic spectrum: decomposition of light in its different wavelengths (from radio waves to gamma rays).
Answer:
Frequency, 
Explanation:
Visible red light has a wavelength of 680 nanometers (6.8 x 10⁻⁷ m). The speed of light is 3.0 x 10 ⁸ m / s. What is the frequency of visible red light?
It is given that,
Wavelength of a visible red light is, 
Speed of light is, 
We need to find the frequency of visible red light. It can be calculated using below relation.

So, the frequency of visible red light is
.
1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].
2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].
3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].
4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].
1. Frequency is the number of complete waves that pass a point in a second. 2.Wavelength is the distance between two crests or two troughs. 3.Time period <span> is the time it takes for one complete wave to pass a given point. 4. Amplitude is the height of the wave. Hence option 4 is correct. </span>