From the calculation, the molar mass of the solution is 141 g/mol.
<h3>What is the molar mass?</h3>
We know that;
ΔT = K m i
K = the freezing constant
m = molality of the solution
i = the Van't Hoft factor
The molality of the solution is obtained from;
m = ΔT/K i
m = 3.89/5.12 * 1
m = 0.76 m
Now;
0.76 = 26.7 /MM/0.250
0.76 = 26.7 /0.250MM
0.76 * 0.250MM = 26.7
MM= 26.7/0.76 * 0.250
MM = 141 g/mol
Learn more about molar mass:brainly.com/question/12127540?
#SPJ12
Answer:
Mario uses a hot plate to heat a beaker of 50mL of water. He used a thermometer to measure the
temperature of the water. The water in the beaker began to boil when it reached the temperature of
100'C. If Mario completes the same experiment with 25mL of water, what would happen to the boiling
point?
a) The water will not reach a boil.
b) The boiling point of water will increase.
c) The boiling point of water will decrease.
d) The boiling point of water will stay the same.
Explanation:
Answer:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Explanation:
First of all, let us balance the equation to give;
2Sb(OH)3 (s) + 3Na2S (aq) = Sb2S3 + 3NaOH
Now, we can observe the presence of positive Sodium ions (Na+) and negative hydroxyl ions (OH-) on both left and right sides of the equation.
Now, the two ions will cancel out. These ions are not really involved in the overall reaction and thus do not require being written in the overall equation. Hence, the overall net ionic reaction can now be written as:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
A meteorologist predicts fog in the morning over lakes and river bottoms because of the atmospheric conditions and their interactions with the <span>hydrosphere. The hydrosphere is the region on the Earth's surface where the total water on the planet is found. The hydrosphere can be in the form of liquid, vapor, or ice.</span>
It is avogrado number. One molecue of magnesium has 6.023 x 10^23 atoms