Explanation:
It is more difficult to remove electrons from the second shell or energy level because of the imbalance between the positive nuclear charge and the remaining electrons.
- The amount of energy required to remove electrons in ground state of an atom is the ionization energy.
- The first ionization energy is the energy needed to remove the most loosely bound electron of an atom in the gas phase in ground state.
- The second energy has a greater nuclear pull as it is closer to the nucleus.
- Both potassium and silicon have the same number of energy levels.
<span>The correct answer is( A) blood.
when the buffer solution its PH value changes very little when a small amount
of strong acid or base is added to it, and here the bicarbonate buffering system is used to regular the PH of the blood that keeping the PH at nearly constant value by maintaining the original acidity or basicity of the solution.</span>
Answer:

Explanation:
Hello!
In this case, since the net ionic equation of a chemical reaction shows up the ionic species that result from the simplification of the spectator ions, which are those at both reactants and products sides, we take into account that aqueous species ionize into ions whereas liquid, solid and gas species remain unionized. In such a way, for the reaction of cesium phosphate and silver nitrate we can write the complete molecular equation:

Whereas the three aqueous salts are ionized in order to write the following complete ionic equation:

In such a way, since the cesium and nitrate ions are the spectator ions because of the aforementioned, the net ionic equation turns out:

Best regards!
There are only 2 atoms in an Oxygen molecule