Answer:
Avogadro's Law
Explanation:
The amount of moles is directly proportional to the volume of the gas under constant temperature and pressure. That is the statement of Avogadro's law. The equation is:
V1n2 = V2n1
<em>Where V is volume and n are moles of 1, initial state and 2, final state of the gas</em>
<em />
That means, right option is:
<h3>Avogadro's Law
</h3>
5.6 × 10⁻³ g/mol of C₆H₁₂O₆ are in 1. 90 x 10²² molecules.
The mass per unit amount of a certain chemical entity is known as the molar mass (symbol M, SI unit kgmol1). The chemical entity in question should always be identified in accordance with the mole definition.
The number of atoms present in 1 mole of hydrogen is equal to 6.02 × 10²³ known as Avogadro’s number (NA).
The units of molar mass follow its definition; grams per mole. Mathematically, the defining equation of molar mass is
Molar mass = mass/mole = g/mol
180g/mol glucose has = 6.02 × 10²³
x g/mol glucose has = 1.90 × 10 ²²
To find x;

x = 5.6 × 10⁻³ g/mol
Therefore, 5.6 × 10⁻³ g/mol of C₆H₁₂O₆ are in 1. 90 x 10²² molecules.
Learn more about molar mass here:
brainly.com/question/837939
#SPJ4
Answer:
A. Reference blank
B. Cuvettes
C. Transmittance
D. Absorbance
E. Wavelength
Explanation:
A reference blank is a sample prepared using the solvent and any other chemicals in the sample solutions, but not the absorbing substance.
A square-shaped container, typically made of quartz, designed to hold samples in a spectrophotometer is known as Cuvettes.
A measurement of the amount of light that passes through a sample or percentage of light transmitted by the sample, with the respective intensities of the incident and transmitted beams is called Transmittance.
The measurement of the amount of light taken in by a sample is known as Absorbance
The wavelength is also the distance travelled by the wave during a period of oscillation. In spectrophotometry, the unit is inversely proportional to energy and commonly measured in nanometers