1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
3 years ago
14

The fine for passing a stopped school bus illegally on the right is

Engineering
1 answer:
ioda3 years ago
8 0
You will pay a minimum fine of $265 for your first offense. A second offense within 5 years of this nature carries an additional $265
You might be interested in
The base class Pet has attributes name and age. The derived class Dog inherits attributes from the base class Pet class and incl
Nonamiya [84]

Answer:

Explanation:

class Pet:

   def __init__(self):

       self.name = ''

       self.age = 0

   def print_info(self):

       print('Pet Information:')

       print('   Name:', self.name)

       print('   Age:', self.age)

class Dog(Pet):

   def __init__(self):

       Pet.__init__(self)

       self.breed = ''

def main():

   my_pet = Pet()

   my_dog = Dog()

   pet_name = input()

   pet_age = int(input())

   dog_name = input()

   dog_age = int(input())

   dog_breed = input()

   my_pet.name = pet_name

   my_pet.age = pet_age

   my_pet.print_info()

   my_dog.name = dog_name

   my_dog.age = dog_age

   my_dog.breed = dog_breed

   my_dog.print_info()

   print('   Breed:', my_dog.breed)

main()

3 0
3 years ago
Select the correct text in the passage.
sineoko [7]
It is habahi Yw with yuuuuuy I am a little more confused about
5 0
3 years ago
Read 2 more answers
The state of plane strain on an element is:
balu736 [363]

Answer:

a. ε₁=-0.000317

   ε₂=0.000017

θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain =3.335 *10^-4

Associated average normal strain ε(avg) =150 *10^-6

θ = 31.71 or -58.29

Explanation:

\epsilon _{1,2} =\frac{\epsilon_x + \epsilon_y}{2}  \pm \sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\epsilon _{1,2} =\frac{-300 \times 10^{-6} + 0}{2}  \pm \sqrt{(\frac{-300 \times 10^{-6}+ 0}{2}) ^2 + (\frac{150 \times 10^-6}{2})^2}\\\\\epsilon _{1,2} = -150 \times 10^{-6}  \pm 1.67 \times 10^{-4}

ε₁=-0.000317

ε₂=0.000017

To determine the orientation of ε₁ and ε₂

tan 2 \theta_p = \frac{\gamma_xy}{\epsilon_x - \epsilon_y} \\\\tan 2 \theta_p = \frac{150 \times 10^{-6}}{-300 \times 10^{-6}-\ 0}\\\\tan 2 \theta_p = -0.5

θ= -13.28° and  76.72°

To determine the direction of ε₁ and ε₂

\epsilon _{x' }=\frac{\epsilon_x + \epsilon_y}{2}  + \frac{\epsilon_x -\epsilon_y}{2} cos2\theta  + \frac{\gamma_xy}{2}sin2\theta \\\\\epsilon _{x'} =\frac{-300 \times 10^{-6}+ \ 0}{2}  + \frac{-300 \times 10^{-6} -\ 0}{2} cos(-26.56)  + \frac{150 \times 10^{-6}}{2}sin(-26.56)\\\\

=-0.000284 -0.0000335 = -0.000317 =ε₁

Therefore θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain

\gamma_{max \ in \ plane} =2\sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\gamma_{max \ in \ plane} = 2\sqrt{(\frac{-300 *10^{-6} + 0}{2} )^2 + (\frac{150 *10^{-6}}{2})^2}

=3.335 *10^-4

\epsilon_{avg} =(\frac{\epsilon_x + \epsilon_y}{2} )

ε(avg) =150 *10^-6

orientation of γmax

tan 2 \theta_s = \frac{-(\epsilon_x - \epsilon_y)}{\gamma_xy} \\\\tan 2 \theta_s = \frac{-(-300*10^{-6} - 0)}{150*10^{-6}}

θ = 31.71 or -58.29

To determine the direction of γmax

\gamma _{x'y' }=  - \frac{\epsilon_x -\epsilon_y}{2} sin2\theta  + \frac{\gamma_xy}{2}cos2\theta \\\\\gamma _{x'y' }=  - \frac{-300*10^{-6} - \ 0}{2} sin(63.42)  + \frac{150*10^{-6}}{2}cos(63.42)

= 1.67 *10^-4

4 0
3 years ago
Radioactive wastes are temporarily stored in a spherical container, the center of which is buried a distance of 10 m below the e
a_sh-v [17]

Answer:

Outside temperature =88.03°C

Explanation:

Conductivity of air-soil from standard table

   K=0.60 W/m-k

To find temperature we need to balance energy

Heat generation=Heat dissipation

Now find the value

We know that for sphere

q=\dfrac{2\pi DK}{1-\dfrac{D}{4H}}(T_1-T_2)

Given that q=500 W

so

500=\dfrac{2\pi 2\times .6}{1-\dfrac{2}{4\times 10}}(T_1-25)

By solving that equation we get

T_2=88.03°C

So outside temperature =88.03°C

6 0
3 years ago
On aircraft equipped with fuel pumps, when is the auxiliary electric driven pump used?.
pochemuha
In an airplane equipped with fuel pumps, the auxiliary electric fuel pump is used in the event the engine-driven fuel pump fails.. hope this helped !
6 0
2 years ago
Other questions:
  • A rectangular channel 6 m wide with a depth of flow of 3m has a mean velocity of 1.5 m/sec. The channel undergoes a smooth, grad
    7·1 answer
  • Does a thicker core make an electromagnet stronger?
    13·1 answer
  • Determine the Thevenin/Norton Equivalent Circuit with respect to the terminalsa,bas shown in the figure. (Here 1A is an independ
    11·1 answer
  • A hollow steel tube with an inside diameter of 100 mm must carry a tensile load of 400 kN. Determine the outside diameter of the
    12·2 answers
  • n open feedwater heater operates at steady state with liquid water entering inlet 1 at 10 bar, 50°C. A separate stream of steam
    8·1 answer
  • What are significant figures​
    13·1 answer
  • W<br>n só<br>i<br>Eo<br>E<br>find the transfer function​
    9·1 answer
  • 2.
    7·1 answer
  • Define;<br>i) Voltage<br>ii) Current<br>iii) Electrical Power<br>iv) Electrical Energy​
    10·1 answer
  • Thermal energy measured by?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!