Answer:
Steps:
1. Create a text file that contains blade diameter (in feet), wind velocity (in mph) and the approximate electricity generated for the year
2. load the data file for example, in matlab, use ('fileame.txt') to load the file
3. create variables from each column of your data
for example, in matlab,
x=t{1}
y=t{2}
4. plot the wind velocity and electricity generated.
plot(x, y)
5. Label the individual axis and name the graph title.
title('Graph of wind velocity vs approximate electricity generated for the year')
xlabel('wind velocity')
ylabel('approximate electricity generated for the year')
Answer:
Explanation: Clutch Plate.
Clutch Cover.
Clutch Bearing (Release bearing)
Release Fork (clutch fork)
To put out a class D metal fire, you must smother the fire and eliminate the oxygen element in the fire.
<h3>What is a Class D fire?</h3>
A class D fire is a type of fire that cannot be extinguished by water. This is because adding water to it reacts with other elements in the fire intensifying the fire even more.
Smothering in this context involves adding a solution like carbon dioxide (CO2) into the fire, this results in a reduction of oxygen in the atmosphere surrounding the class D fire.
By so doing, smothering the fire eliminates the oxygen element in the fire, thereby extinguishing the fire.
You can learn more about extinguishing fires here https://brainly.in/question/760550
#SPJ1
Answer:
<h2>hope it helps you see the attachment for further information .....✌✌✌✌✌</h2>
Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series