Answer:
The flashlight leaves the water at an angle of 51.77°.
Explanation:
if n1 = 1.33 is the refractive index of water and ∅1 is the angle at which the flashlight shine beneath the water, and n2 = 1.0 is the refractive index of air and ∅2 is the angle the flashlight leaves the water.
Then, according to Snell's law :
n1×sin(∅1) = n2×sin(∅2)
sin(∅2) = n1×sin(∅1)/n2
= (1.33)×sin(36.2)/(1.0)
= 0.7855055×379
∅2 = 51.77°
Therefore, the flashlight leaves the water at an angle of 51.77°.
Therefore, the magnitude of magnetic field at a distance 1.10cm from the origin is 27.3mT
<u>Explanation:</u>
Given;
Number of turns, N = 1000
Inner radius, r₁ = 1cm
Outer radius, r₂ = 2cm
Current, I = 1.5A
Magnetic field strength, B = ?
The magnetic field inside a tightly wound toroid is given by B = μ₀ NI / 2πr
where,
a < r < b and a and b are the inner and outer radii of the toroid.
The magnetic field of toroid is

Substituting the values in the formula:


Therefore, the magnitude of magnetic field at a distance 1.10cm from the origin is 27.3mT
<h2>Answer </h2>
Option C - Carbon Dioxide and Water
<u>Explanation </u>
The chemical equation reaction of methane (CH4) and oxygen gas (O2) to form carbon dioxide (CO2) and water (H2O).
CH4 + 2O2 → CO2 + 2H2O.
In this equation, carbon dioxide and water are products. Products are substances which are formed after a chemical reaction so in this case carbon dioxide and water are formed as a result after a chemical reaction. Therefore, these are products of reaction of methane and oxygen gas.
Answer:
it's because some versions have more steps and others have less