Wassily Kandinsky invented abstract geometry :) have a good week
Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :




t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

Here, a = -g


h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.
There is no theoretical OR observational evidence for that statement.
I would say D would be the answer. but is this even a real like homework question
A magnet contains billions of aligned atoms known as magnetic domains