I believe your answer should be C. Speed.
Tidal, wind, and oil energy are derived from the sun. Nuclear isn't.
It is fine to use the equation given by Plitter, since we are told that the mass is about the same as it is now, and I seriously doubt the original question wants the student to go into relativistic effects, electron degeneracy pressure and magnetic effects that govern a real white dwarf star.
There is no need to make it unnecessarily complicated, when the question is set at high school level. The question asks, given a particular radius, and a given mass, what will the density be (which in this case will be the average density). To answer the question, one needs to know the mass of the sun (which is about 2×1030 Kg. One needs to convert the diameter to a radius, and then calculate the spherical volume of the white dwarf. Then one can use the formula given above, namely density=mass/volume
<h2>
<em>Answer:</em></h2><h2>
<em>Regular </em><em>object</em></h2>
- <em>Those </em><em>substance </em><em>which </em><em>have </em><em>fixed </em><em>geometrical </em><em>shape </em><em>are </em><em>called </em><em>regular </em><em>object.</em>
- <em>For </em><em>example</em><em>:</em><em> </em><em>books,</em><em>pencils,</em><em> </em><em>basketball</em><em> </em><em>etc.</em>
<h2>
<em>Irregular </em><em>object</em></h2>
- <em>Those </em><em>substance </em><em>which </em><em>do </em><em>not </em><em>have </em><em>geometrical</em><em> </em><em>shape </em><em>are </em><em>called </em><em>irregular</em><em> </em><em>object</em><em>.</em>
- <em>For </em><em>example:</em><em> </em><em>a </em><em>piece </em><em>of </em><em>stone,</em><em>a </em><em>broken </em><em>piece </em><em>of </em><em>brick,</em><em>leaf </em><em>etc.</em>
<em>Hope </em><em>this </em><em>helps.</em><em>.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
20.6 K
Explanation:
The root mean square velocity is the square root of the average of the square of the velocity. It can be calculated using the following expression.

where,
: root mean square velocity
R: ideal gas constant
T: absolute temperature
M: molar mass
Then, we can find the temperature,
