Answer:
The height of building should be 98.13 m plus the height of Daniel. Since the 63° was measured from his eye level.
Explanation:
Work = (force) x (distance)
The work he did: Work = (700 N) x (4m) = 2,800 joules
The rate at which
he did it (power): Work/time = 2,800 joules/2 sec
= 1,400 joules/sec
= 1,400 watts
= 1.877... horsepower (rounded)
Answer: V = 15 m/s
Explanation:
As stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. The observed frequency the car will be experiencing will be addition of the two frequency. That is,
F = 2.1 × 10^10 + 1030 = 2.100000103×10^10Hz
Using doppler effect formula
F = C/ ( C - V) × f
Where
F = observed frequency
f = source frequency
C = speed of light = 3×10^8
V = speed of the car
Substitute all the parameters into the formula
2.100000103×10^10 = 3×10^8/(3×10^8 -V) × 2.1×10^10
2.100000103×10^10/2.1×10^10 = 3×108/(3×10^8 - V)
1.000000049 = 3×10^8/(3×10^8 - V)
Cross multiply
300000014.7 - 1.000000049V = 3×10^8
Collect the like terms
1.000000049V = 14.71429
Make V the subject of formula
V = 14.71429/1.000000049
V = 14.7 m/s
The speed of the car is 15 m/s approximately
Answer:
Same direction: t=234s; d=6.175Km
Opposite direction: t=27.53s; d=0.73Km
Explanation:
If the automobile and the train are traveling in the same direction, then the automobile speed relative to the train will be
(<em>the train must see the car advancing at a lower speed</em>), where
is the speed of the automobile and
the speed of the train.
So we have
.
So the train (<em>anyone in fact</em>) will watch the automobile trying to cover the lenght of the train L at that relative speed. The time required to do this will be:

And in that time the car would have traveled (<em>relative to the ground</em>):

If they are traveling in opposite directions, <u>we have to do all the same</u> but using
(<em>the train must see the car advancing at a faster speed</em>), so repeating the process:



12.00 min = 0.2 hr
8.00 min = 0.15 hr
Total distance:
(10.0 km/hr) (0.2 hr) + (15.0 km/hr) (0.15 hr) + (20.0 km/hr) (0.2 hr)
= 8.25 km
Average speed:
(10.0 km/hr + 15.0 km/hr + 20.0 km/hr) / 3
= 15 km/hr
Change in position:
(10.0 km/hr) (0.2 hr) + (15.0 km/hr) (0.15 hr) - (20.0 km/hr) (0.2 hr)
= 0.25 km
Average velocity:
(10.0 km/hr + 15.0 km/hr - 20.0 km/hr) / 3
≈ 1.67 m/s