The question is missing parts. Here is the complete question.
Let M =
. Find
and
such that
, where
is the identity 2x2 matrix and 0 is the zero matrix of appropriate dimension.
Answer: 

Step-by-step explanation: Identity matrix is a sqaure matrix that has 1's along the main diagonal and 0 everywhere else. So, a 2x2 identity matrix is:
![\left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
![M^{2} = \left[\begin{array}{cc}6&5\\-1&-4\end{array}\right]\left[\begin{array}{cc}6&5\\-1&-4\end{array}\right]](https://tex.z-dn.net/?f=M%5E%7B2%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D)
![M^{2}=\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]](https://tex.z-dn.net/?f=M%5E%7B2%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D)
Solving equation:
![\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]+c_{1}\left[\begin{array}{cc}6&5\\-1&-4\end{array}\right] +c_{2}\left[\begin{array}{cc}1&0\\0&1\end{array}\right] =\left[\begin{array}{cc}0&0\\0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D%2Bc_%7B1%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%265%5C%5C-1%26-4%5Cend%7Barray%7D%5Cright%5D%20%2Bc_%7B2%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%260%5C%5C0%260%5Cend%7Barray%7D%5Cright%5D)
Multiplying a matrix and a scalar results in all the terms of the matrix multiplied by the scalar. You can only add matrices of the same dimensions.
So, the equation is:
![\left[\begin{array}{cc}31&10\\-2&15\end{array}\right]+\left[\begin{array}{cc}6c_{1}&5c_{1}\\-1c_{1}&-4c_{1}\end{array}\right] +\left[\begin{array}{cc}c_{2}&0\\0&c_{2}\end{array}\right] =\left[\begin{array}{cc}0&0\\0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D31%2610%5C%5C-2%2615%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6c_%7B1%7D%265c_%7B1%7D%5C%5C-1c_%7B1%7D%26-4c_%7B1%7D%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dc_%7B2%7D%260%5C%5C0%26c_%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%260%5C%5C0%260%5Cend%7Barray%7D%5Cright%5D)
And the system of equations is:

There are several methods to solve this system. One of them is to multiply the second equation to -1 and add both equations:




With
, substitute in one of the equations and find
:





<u>For the equation, </u>
<u> and </u>
<u />
The correct answer among all the other choices is D. both (a) and (b). The statements that are always true of similar polygons are corresponding angles of similar figures have the same measure and the lengths of corresponding sides form equivalent ratios. Thank you for posting your question. I hope this answer helped you. Let me know if you need more help.
Answer:
y = 3x
y = 2.2x
y=1/2x
Step-by-step explanation:
i did the test thank me later
4 dozen muffins will be 2.5 cups of flour
times 5 is 12.5 cups of flour for 20 dozen muffins
1/2 as 3 out of the 6 are checkered
Hope I helped!