Equilibrium chemical reaction between chair and boat forms is:
Kc =
![\frac{[Boat form]}{[Chair form]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BBoat%20form%5D%7D%7B%5BChair%20form%5D%7D%20)
Suppose the total number of molecules is x
Number of molecules of chair form is 6.42/100 x
Number of molecules of boat form is 93.58/100 x
Kc =

= 14.6
A nitrogen atoms can make 3 covalent bonds because it has three unpaired electrons
Answer:
placing the reactants on a hot plate
Explanation:
If the temperature goes up, the reaction rate will increase. Because the particle will move faster and makes the kinetic energy larger.
Answer:
Explanation:
[ so₃] = 4.37 x 10⁻²
[so₂] = 4.77 x 10⁻²
[ o₂] = 4.55 x 10⁻²
Qc = (4.37)²x10⁻⁴ /(4.77)².(4.55) x 10⁻⁶ =18.44
Qc is less than Kc hence in order to reach equilibrium more of so₃ will be produced . Statement 1 is true.
Kc is always constant . Statement 2 is false.
Statement 3 is false because statement 1 is true.
Qc Is smaller than Kc . So statement 4 is false.
The reaction is not in equilibrium. Statement 5 is false.
Answer:
Explanation:
Explanation:
All you have to do here is use the ideal gas law equation, which looks like this
P
V
=
n
R
T
−−−−−−−−−−
Here
P
is the pressure of the gas
V
is the volume it occupies
n
is the number of moles of gas present in the sample
R
is the universal gas constant, equal to
0.0821
atm L
mol K
T
is the absolute temperature of the gas
Rearrange the equation to solve for
T
P
V
=
n
R
T
⇒
T
=
P
V
n
R
Before plugging in your values, make sure that the units given to you match those used in the expression of the universal gas constant.
In this case, the volume is given in liters and the pressure in atmospheres, so you're good to go.
Plug in your values to find
T
=
3.10
atm
⋅
64.51
L
9.69
moles
⋅
0.0821
atm
⋅
L
mol
⋅
K
T
=
251 K
−−−−−−−−−
The answer is rounded to three