All problems are caused by a factor in which human beings play an important role in its cause.
Answer:
The answer to your question is it is not at equilibrium, it will move to the products.
Explanation:
Data
Keq = 2400
Volume = 1 L
moles of NO = 0.024
moles of N₂ = 2
moles of O₂ = 2.6
Process
1.- Determine the concentration of reactants and products
[NO] = 0.024 / 1 = 0.024
[N₂] = 2/1 = 2
[O₂] = 2.6/ 1= 2.6
2.- Balanced chemical reaction
N₂ + O₂ ⇒ 2NO
3.- Write the equation for the equilibrium of this reaction
Keq = [NO]²/[N₂][O₂]
- Substitution
Keq = [0.024]² / [2][2.6]
-Simplification
Keq = 0.000576 / 5.2
-Result
Keq = 1.11 x 10⁻⁴
Conclusion
It is not at equilibrium, it will move to the products because the experimental Keq was lower than the Keq theoretical-
1.11 x 10⁻⁴ < 2400
Answer:
a. 100.0 mL of 0.10 M NH₃ with 100.0 mL of 0.15 M NH₄Cl.
c. 50.0 mL of 0.15 M HF with 20.0 mL of 0.15 M NaOH.
Explanation:
A buffer system is formed in 1 of 2 ways:
- A weak acid and its conjugate base.
- A weak base and its conjugate acid.
Determine whether mixing each pair of the following results in a buffer.
a. 100.0 mL of 0.10 M NH₃ with 100.0 mL of 0.15 M NH₄Cl.
YES. NH₃ is a weak base and NH₄⁺ (from NH₄Cl ) is its conjugate base.
b. 50.0 mL of 0.10 M HCl with 35.0 mL of 0.150 M NaOH.
NO. HCl is a strong acid and NaOH is a strong base.
c. 50.0 mL of 0.15 M HF with 20.0 mL of 0.15 M NaOH.
YES. HF is a weak acid and it reacts with NaOH to form NaF, which contains F⁻ (its conjugate base).
d. 175.0 mL of 0.10 M NH₃ with 150.0 mL of 0.12 M NaOH.
NO. Both are bases.
688x
Explanation- Your welcome
Phosphates and deoxyribose